BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25736835)

  • 1. Efficient, chemical-catalytic approach to the production of 3-hydroxypropanoic acid by oxidation of biomass-derived levulinic acid with hydrogen peroxide.
    Wu L; Dutta S; Mascal M
    ChemSusChem; 2015 Apr; 8(7):1167-9. PubMed ID: 25736835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic conversion of renewable biomass resources to fuels and chemicals.
    Serrano-Ruiz JC; West RM; Dumesic JA
    Annu Rev Chem Biomol Eng; 2010; 1():79-100. PubMed ID: 22432574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system.
    Li J; Jiang Z; Hu L; Hu C
    ChemSusChem; 2014 Sep; 7(9):2482-8. PubMed ID: 25045141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of sugars and levulinic acid from marine biomass Gelidium amansii.
    Jeong GT; Park DH
    Appl Biochem Biotechnol; 2010 May; 161(1-8):41-52. PubMed ID: 19830598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.
    Omoruyi U; Page S; Hallett J; Miller PW
    ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis.
    Metzker G; Burtoloso AC
    Chem Commun (Camb); 2015 Sep; 51(75):14199-202. PubMed ID: 26258183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous catalytic hydrogenation of biobased levulinic and succinic acids in aqueous solutions.
    Corbel-Demailly L; Ly BK; Minh DP; Tapin B; Especel C; Epron F; Cabiac A; Guillon E; Besson M; Pinel C
    ChemSusChem; 2013 Dec; 6(12):2388-95. PubMed ID: 24039162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-pot transformation of cellobiose to formic acid and levulinic acid over ionic-liquid-based polyoxometalate hybrids.
    Li K; Bai L; Amaniampong PN; Jia X; Lee JM; Yang Y
    ChemSusChem; 2014 Sep; 7(9):2670-7. PubMed ID: 25110998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Catalytic Hydrogenation of Biomass-Derived Methyl Levulinate to γ-Valerolactone in Methanol.
    Tang X; Li Z; Zeng X; Jiang Y; Liu S; Lei T; Sun Y; Lin L
    ChemSusChem; 2015 May; 8(9):1601-7. PubMed ID: 25873556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MoO
    Wang L; Yang Y; Yin P; Ren Z; Liu W; Tian Z; Zhang Y; Xu E; Yin J; Wei M
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31799-31807. PubMed ID: 34197068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymerization of nonfood biomass-derived monomers to sustainable polymers.
    Zhang Y; Chen EY
    Top Curr Chem; 2014; 353():185-227. PubMed ID: 24699900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Insights into the Reactivity of Biomass with Butenes for the Synthesis of Butyl Levulinates.
    Démolis A; Eternot M; Essayem N; Rataboul F
    ChemSusChem; 2017 Jun; 10(12):2612-2617. PubMed ID: 28464524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of levulinate into succinate through catalytic oxidative carbon-carbon bond cleavage with dioxygen.
    Liu J; Du Z; Lu T; Xu J
    ChemSusChem; 2013 Dec; 6(12):2255-8. PubMed ID: 23922234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing.
    Serrano-Ruiz JC; Luque R; Sepúlveda-Escribano A
    Chem Soc Rev; 2011 Nov; 40(11):5266-81. PubMed ID: 21713268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodeoxygenation of the angelica lactone dimer, a cellulose-based feedstock: simple, high-yield synthesis of branched C7 -C10 gasoline-like hydrocarbons.
    Mascal M; Dutta S; Gandarias I
    Angew Chem Int Ed Engl; 2014 Feb; 53(7):1854-7. PubMed ID: 24474249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electricity storage in biofuels: selective electrocatalytic reduction of levulinic acid to valeric acid or γ-valerolactone.
    Xin L; Zhang Z; Qi J; Chadderdon DJ; Qiu Y; Warsko KM; Li W
    ChemSusChem; 2013 Apr; 6(4):674-86. PubMed ID: 23457116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system.
    Geilen FM; Engendahl B; Harwardt A; Marquardt W; Klankermayer J; Leitner W
    Angew Chem Int Ed Engl; 2010 Jul; 49(32):5510-4. PubMed ID: 20586088
    [No Abstract]   [Full Text] [Related]  

  • 18. Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst.
    Ya'aini N; Amin NA; Asmadi M
    Bioresour Technol; 2012 Jul; 116():58-65. PubMed ID: 22609656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts.
    Upare PP; Lee JM; Hwang YK; Hwang DW; Lee JH; Halligudi SB; Hwang JS; Chang JS
    ChemSusChem; 2011 Dec; 4(12):1749-52. PubMed ID: 22114041
    [No Abstract]   [Full Text] [Related]  

  • 20. Electrochemical Coupling of Biomass-Derived Acids: New C
    Wu L; Mascal M; Farmer TJ; Arnaud SP; Wong Chang MA
    ChemSusChem; 2017 Jan; 10(1):166-170. PubMed ID: 27873475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.