These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 2573736)

  • 1. Coated vesicles from developing and adult rat skeletal muscles contain multiple molecular forms of acetylcholinesterase.
    Hodges-Savola CA; Gregory EJ; Rummel SA; Fernandez HL
    J Neurosci Res; 1989 Oct; 24(2):174-83. PubMed ID: 2573736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric molecular forms of acetylcholinesterase in mammalian skeletal muscles.
    Sketelj J; Brzin M
    J Neurosci Res; 1985; 14(1):95-103. PubMed ID: 4020901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle acetylcholinesterase molecular forms in amyotrophic lateral sclerosis.
    Fernandez HL; Stiles JR; Donoso JA
    Muscle Nerve; 1986 Jun; 9(5):399-406. PubMed ID: 3724786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific impulse patterns regulate acetylcholinesterase activity in skeletal muscles of rats and rabbits.
    Sketelj J; Leisner E; Gohlsch B; Skorjanc D; Pette D
    J Neurosci Res; 1997 Jan; 47(1):49-57. PubMed ID: 8981237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered acetylcholinesterase isozyme patterns in mice with hereditary muscular dystrophy.
    Kuhn DE; Logan DM; Rathbone MP
    J Exp Zool; 1981 May; 216(2):213-33. PubMed ID: 7241063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo effects of deltamethrin exposure on activity and distribution of molecular forms of carp AChE.
    Szegletes T; Bálint T; Szegletes Z; Nemcsók J
    Ecotoxicol Environ Saf; 1995 Aug; 31(3):258-63. PubMed ID: 7498065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular transport, sorting, and turnover of acetylcholinesterase. Evidence for an endoglycosidase H-sensitive form in Golgi apparatus, sarcoplasmic reticulum, and clathrin-coated vesicles and its rapid degradation by a non-lysosomal mechanism.
    Rotundo RL; Thomas K; Porter-Jordan K; Benson RJ; Fernandez-Valle C; Fine RE
    J Biol Chem; 1989 Feb; 264(6):3146-52. PubMed ID: 2563379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of AChE with Lens culinaris agglutinin reveals differences in glycosylation of molecular forms in sarcoplasmic reticulum membrane subfractions.
    Campoy FJ; Cabezas-Herrera J; Vidal CJ
    J Neurosci Res; 1992 Dec; 33(4):568-78. PubMed ID: 1484390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of molecular isoforms of acetylcholinesterase in learning and memory functions.
    Das A; Dikshit M; Nath C
    Pharmacol Biochem Behav; 2005 May; 81(1):89-99. PubMed ID: 15882896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of acetylcholinesterase G4 and G1 molecular isoforms from rat cortex.
    Zhao Q; Tang XC
    Acta Pharmacol Sin; 2002 Feb; 23(2):173-6. PubMed ID: 11866880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinnervation of a denervated slow muscle triggers high extrajunctional expression of the asymmetric molecular forms of acetylcholinesterase.
    Crne-Finderle N; Toplisek J; Sketelj J
    J Neurosci Res; 1995 Aug; 41(6):745-52. PubMed ID: 7500376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Satellite cells in slow and fast rat muscles differ in respect to acetylcholinesterase regulation mechanisms they convey to their descendant myofibers during regeneration.
    Dolenc I; Crne-Finderle N; Erzen I; Sketelj J
    J Neurosci Res; 1994 Feb; 37(2):236-46. PubMed ID: 8151731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nerve regulation of class I and class II-asymmetric forms of acetylcholinesterase in rat skeletal muscles.
    Fadić R; Inestrosa NC
    J Neurosci Res; 1989 Apr; 22(4):449-55. PubMed ID: 2760943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regenerated EDL muscle of rats requires innervation to maintain AChE molecular forms.
    Melone MA; De Lucia D; Fratta M; Cotrufo R
    Muscle Nerve; 1990 Aug; 13(8):713-21. PubMed ID: 2385257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential distribution of vesicular carriers during differentiation and synapse formation.
    Bursztajn S; Jong YJ; Berman SA
    J Cell Biochem; 1993 Nov; 53(3):251-64. PubMed ID: 8263042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo biosynthesis of clathrin and other coated vesicle proteins from rat liver.
    Pierce LR; Zurzolo C; Edelhoch H
    J Cell Biochem; 1986; 31(2):121-33. PubMed ID: 2874148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between the acetylcholinesterase content in motor nerves and their muscles.
    Gisiger V; Stephens H
    J Physiol (Paris); 1982-1983; 78(8):720-8. PubMed ID: 7187446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dolichos biflorus agglutinin receptors in mouse muscle. II. Biochemical properties in relation to molecular forms of acetylcholinesterase.
    Kaupmann K; Jockusch H
    Eur J Cell Biol; 1988 Aug; 46(3):419-24. PubMed ID: 3181164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular distribution of acetylcholinesterase asymmetric forms during postnatal development of mammalian skeletal muscle.
    Fernandez HL; Seiter TC
    FEBS Lett; 1984 May; 170(1):147-51. PubMed ID: 6723959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reciprocal neural regulation of extrajunctional acetylcholinesterase and collagen Q in rat muscles--the role of calcineurin signaling.
    Trinkaus M; Pregelj P; Sketelj J
    Chem Biol Interact; 2008 Sep; 175(1-3):45-9. PubMed ID: 18582853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.