These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

602 related articles for article (PubMed ID: 25737536)

  • 1. Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.
    Lee HY; Raphael PD; Park J; Ellerbee AK; Applegate BE; Oghalai JS
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3128-33. PubMed ID: 25737536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Coherence Tomography to Measure Sound-Induced Motions Within the Mouse Organ of Corti In Vivo.
    Jawadi Z; Applegate BE; Oghalai JS
    Methods Mol Biol; 2016; 1427():449-62. PubMed ID: 27259941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti.
    Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS
    J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinally propagating traveling waves of the mammalian tectorial membrane.
    Ghaffari R; Aranyosi AJ; Freeman DM
    Proc Natl Acad Sci U S A; 2007 Oct; 104(42):16510-5. PubMed ID: 17925447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes.
    Cormack J; Liu Y; Nam JH; Gracewski SM
    J Acoust Soc Am; 2015 Mar; 137(3):1117-25. PubMed ID: 25786927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound Induced Vibrations Deform the Organ of Corti Complex in the Low-Frequency Apical Region of the Gerbil Cochlea for Normal Hearing : Sound Induced Vibrations Deform the Organ of Corti Complex.
    Meenderink SWF; Lin X; Park BH; Dong W
    J Assoc Res Otolaryngol; 2022 Oct; 23(5):579-591. PubMed ID: 35798901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of cochlear mechanics.
    Zwislocki JJ
    Hear Res; 1980 Jun; 2(3-4):171-82. PubMed ID: 6997254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tectorial membrane: a possible effect on frequency analysis in the cochlea.
    Zwislocki JJ; Kletsky EJ
    Science; 1979 May; 204(4393):639-41. PubMed ID: 432671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some current concepts of cochlear mechanics.
    Zwislocki JJ
    Audiology; 1983; 22(6):517-29. PubMed ID: 6667173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What basilar-membrane tuning says about cochlear micromechanics.
    Zwislocki JJ; Kletsky EJ
    Am J Otolaryngol; 1982; 3(1):48-52. PubMed ID: 7114390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tectorial membrane: a possible sharpening effect on the frequency analysis in the cochlea.
    Zwislocki JJ
    Acta Otolaryngol; 1979; 87(3-4):267-9. PubMed ID: 443008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal pattern of basilar membrane vibration in the sensitive cochlea.
    Ren T
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):17101-6. PubMed ID: 12461165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reticular lamina and basilar membrane vibrations in living mouse cochleae.
    Ren T; He W; Kemp D
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9910-5. PubMed ID: 27516544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traveling waves on the organ of corti of the chinchilla cochlea: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-nerve fibers.
    Temchin AN; Recio-Spinoso A; Cai H; Ruggero MA
    J Neurosci; 2012 Aug; 32(31):10522-9. PubMed ID: 22855802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of cochlear mechanics.
    Zwislocki JJ
    Hear Res; 1986; 22():155-69. PubMed ID: 3733537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual traveling waves in an inner ear model with two degrees of freedom.
    Lamb JS; Chadwick RS
    Phys Rev Lett; 2011 Aug; 107(8):088101. PubMed ID: 21929207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromechanical responses to tones in the auditory fovea of the greater mustached bat's cochlea.
    Russell IJ; Kössl M
    J Neurophysiol; 1999 Aug; 82(2):676-86. PubMed ID: 10444665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between traveling wave propagation and amplification at the apex of the mouse cochlea.
    Nankali A; Shera CA; Applegate BE; Oghalai JS
    Biophys J; 2022 Aug; 121(15):2940-2951. PubMed ID: 35778839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sharp vibration maximum in the cochlea without wave reflection.
    Zwislocki JJ
    Hear Res; 1983 Jan; 9(1):103-11. PubMed ID: 6826462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant tectorial membrane motion in the inner ear: its crucial role in frequency tuning.
    Gummer AW; Hemmert W; Zenner HP
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8727-32. PubMed ID: 8710939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.