BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25737778)

  • 1. Simulation tools for particle-based reaction-diffusion dynamics in continuous space.
    Schöneberg J; Ullrich A; Noé F
    BMC Biophys; 2014; 7():11. PubMed ID: 25737778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ReaDDy--a software for particle-based reaction-diffusion dynamics in crowded cellular environments.
    Schöneberg J; Noé F
    PLoS One; 2013; 8(9):e74261. PubMed ID: 24040218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaching new levels of realism in modeling biological macromolecules in cellular environments.
    Feig M; Sugita Y
    J Mol Graph Model; 2013 Sep; 45():144-56. PubMed ID: 24036504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pSpatiocyte: a high-performance simulator for intracellular reaction-diffusion systems.
    Arjunan SNV; Miyauchi A; Iwamoto K; Takahashi K
    BMC Bioinformatics; 2020 Jan; 21(1):33. PubMed ID: 31996129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential based, spatial simulation of dynamically nested particles.
    Köster T; Henning P; Uhrmacher AM
    BMC Bioinformatics; 2019 Nov; 20(1):607. PubMed ID: 31775608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agent-based simulation of reactions in the crowded and structured intracellular environment: Influence of mobility and location of the reactants.
    Klann MT; Lapin A; Reuss M
    BMC Syst Biol; 2011 May; 5():71. PubMed ID: 21569565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale Modeling of Diffusion in a Crowded Environment.
    Meinecke L
    Bull Math Biol; 2017 Nov; 79(11):2672-2695. PubMed ID: 28924915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SpringSaLaD: A Spatial, Particle-Based Biochemical Simulation Platform with Excluded Volume.
    Michalski PJ; Loew LM
    Biophys J; 2016 Feb; 110(3):523-529. PubMed ID: 26840718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward realistic modeling of dynamic processes in cell signaling: quantification of macromolecular crowding effects.
    Sun J; Weinstein H
    J Chem Phys; 2007 Oct; 127(15):155105. PubMed ID: 17949221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Method for Molecular Dynamics on Curved Surfaces.
    Paquay S; Kusters R
    Biophys J; 2016 Mar; 110(6):1226-33. PubMed ID: 27028633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic off-lattice modeling of molecular self-assembly in crowded environments by Green's function reaction dynamics.
    Lee B; Leduc PR; Schwartz R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031911. PubMed ID: 18851069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusional channeling in the sulfate-activating complex: combined continuum modeling and coarse-grained brownian dynamics studies.
    Cheng Y; Chang CE; Yu Z; Zhang Y; Sun M; Leyh TS; Holst MJ; McCammon JA
    Biophys J; 2008 Nov; 95(10):4659-67. PubMed ID: 18689458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational approach to increase time scales in Brownian dynamics-based reaction-diffusion modeling.
    Frazier Z; Alber F
    J Comput Biol; 2012 Jun; 19(6):606-18. PubMed ID: 22697237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excluded volume effects in on- and off-lattice reaction-diffusion models.
    Meinecke L; Eriksson M
    IET Syst Biol; 2017 Apr; 11(2):55-64. PubMed ID: 28476973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of particle tracking algorithms in commercial CFD packages: sedimentation and diffusion.
    Robinson RJ; Snyder P; Oldham MJ
    Inhal Toxicol; 2007 May; 19(6-7):517-31. PubMed ID: 17497530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. eGFRD in all dimensions.
    Sokolowski TR; Paijmans J; Bossen L; Miedema T; Wehrens M; Becker NB; Kaizu K; Takahashi K; Dogterom M; Ten Wolde PR
    J Chem Phys; 2019 Feb; 150(5):054108. PubMed ID: 30736681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding directs the motion of small molecules inside cells.
    Smith S; Cianci C; Grima R
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28615492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meredys, a multi-compartment reaction-diffusion simulator using multistate realistic molecular complexes.
    Tolle DP; Le Novère N
    BMC Syst Biol; 2010 Mar; 4():24. PubMed ID: 20233406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational methods for diffusion-influenced biochemical reactions.
    Dobrzynski M; Rodríguez JV; Kaandorp JA; Blom JG
    Bioinformatics; 2007 Aug; 23(15):1969-77. PubMed ID: 17537752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Proteins' Rotational Diffusion Coefficients from Simulations of Their Free Brownian Motion in Volume-Occupied Environments.
    Długosz M; Antosiewicz JM
    J Chem Theory Comput; 2014 Jan; 10(1):481-91. PubMed ID: 26579925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.