These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 25737838)
1. NADH oxidase and alkyl hydroperoxide reductase subunit C (peroxiredoxin) from Amphibacillus xylanus form an oligomeric assembly. Arai T; Kimata S; Mochizuki D; Hara K; Zako T; Odaka M; Yohda M; Arisaka F; Kanamaru S; Matsumoto T; Yajima S; Sato J; Kawasaki S; Niimura Y FEBS Open Bio; 2015; 5():124-31. PubMed ID: 25737838 [TBL] [Abstract][Full Text] [Related]
2. Stimulation of peroxidase activity by decamerization related to ionic strength: AhpC protein from Amphibacillus xylanus. Kitano K; Niimura Y; Nishiyama Y; Miki K J Biochem; 1999 Aug; 126(2):313-9. PubMed ID: 10423523 [TBL] [Abstract][Full Text] [Related]
3. Amphibacillus xylanus NADH oxidase and Salmonella typhimurium alkyl-hydroperoxide reductase flavoprotein components show extremely high scavenging activity for both alkyl hydroperoxide and hydrogen peroxide in the presence of S. typhimurium alkyl-hydroperoxide reductase 22-kDa protein component. Niimura Y; Poole LB; Massey V J Biol Chem; 1995 Oct; 270(43):25645-50. PubMed ID: 7592740 [TBL] [Abstract][Full Text] [Related]
4. The NADH oxidase-Prx system in Amphibacillus xylanus. Niimura Y Subcell Biochem; 2007; 44():195-205. PubMed ID: 18084894 [TBL] [Abstract][Full Text] [Related]
5. A hydrogen peroxide-forming NADH oxidase that functions as an alkyl hydroperoxide reductase in Amphibacillus xylanus. Niimura Y; Nishiyama Y; Saito D; Tsuji H; Hidaka M; Miyaji T; Watanabe T; Massey V J Bacteriol; 2000 Sep; 182(18):5046-51. PubMed ID: 10960086 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen peroxide-forming NADH oxidase belonging to the peroxiredoxin oxidoreductase family: existence and physiological role in bacteria. Nishiyama Y; Massey V; Takeda K; Kawasaki S; Sato J; Watanabe T; Niimura Y J Bacteriol; 2001 Apr; 183(8):2431-8. PubMed ID: 11274101 [TBL] [Abstract][Full Text] [Related]
7. Peroxide reductase activity of NADH dehydrogenase of an alkaliphilic Bacillus in the presence of a 22-kDa protein component from Amphibacillus xylanus. Koyama N; Koitabashi T; Niimura Y; Massey V Biochem Biophys Res Commun; 1998 Jun; 247(3):659-62. PubMed ID: 9647749 [TBL] [Abstract][Full Text] [Related]
9. A flavoprotein functional as NADH oxidase from Amphibacillus xylanus Ep01: purification and characterization of the enzyme and structural analysis of its gene. Niimura Y; Ohnishi K; Yarita Y; Hidaka M; Masaki H; Uchimura T; Suzuki H; Kozaki M; Uozumi T J Bacteriol; 1993 Dec; 175(24):7945-50. PubMed ID: 8253683 [TBL] [Abstract][Full Text] [Related]
10. Adaptive response of Amphibacillus xylanus to normal aerobic and forced oxidative stress conditions. Mochizuki D; Arai T; Asano M; Sasakura N; Watanabe T; Shiwa Y; Nakamura S; Katano Y; Fujinami S; Fujita N; Abe A; Sato J; Nakagawa J; Niimura Y Microbiology (Reading); 2014 Feb; 160(Pt 2):340-352. PubMed ID: 24307665 [TBL] [Abstract][Full Text] [Related]
11. Taxonomical and physiological comparisons of the three species of the genus Amphibacillus. Arai T; Yanahashi S; Sato J; Sato T; Ishikawa M; Koizumi Y; Kawasaki S; Niimura Y; Nakagawa J J Gen Appl Microbiol; 2009 Apr; 55(2):155-62. PubMed ID: 19436132 [TBL] [Abstract][Full Text] [Related]
12. Purification and analysis of a flavoprotein functional as NADH oxidase from Amphibacillus xylanus overexpressed in Escherichia coli. Ohnishi K; Niimura Y; Yokoyama K; Hidaka M; Masaki H; Uchimura T; Suzuki H; Uozumi T; Kozaki M; Komagata K; Nishino T J Biol Chem; 1994 Dec; 269(50):31418-23. PubMed ID: 7989308 [TBL] [Abstract][Full Text] [Related]
13. Role of cysteine 337 and cysteine 340 in flavoprotein that functions as NADH oxidase from Amphibacillus xylanus studied by site-directed mutagenesis. Ohnishi K; Niimura Y; Hidaka M; Masaki H; Suzuki H; Uozumi T; Nishino T J Biol Chem; 1995 Mar; 270(11):5812-7. PubMed ID: 7726998 [TBL] [Abstract][Full Text] [Related]
15. Intracellular free flavin and its associated enzymes participate in oxygen and iron metabolism in Kimata S; Mochizuki D; Satoh J; Kitano K; Kanesaki Y; Takeda K; Abe A; Kawasaki S; Niimura Y FEBS Open Bio; 2018 Jun; 8(6):947-961. PubMed ID: 29928575 [No Abstract] [Full Text] [Related]
16. Essential role of the flexible linker on the conformational equilibrium of bacterial peroxiredoxin reductase for effective regeneration of peroxiredoxin. Kamariah N; Eisenhaber B; Eisenhaber F; Grüber G J Biol Chem; 2017 Apr; 292(16):6667-6679. PubMed ID: 28270505 [TBL] [Abstract][Full Text] [Related]
17. Peroxide reductase activity of NADH dehydrogenase in the presence of an endogenous 20-kDa component of an alkaliphilic Bacillus. Koitabashi T; Satoh T; Koyama N Curr Microbiol; 2000 Dec; 41(6):388-91. PubMed ID: 11080386 [TBL] [Abstract][Full Text] [Related]
18. Streptococcus mutans H2O2-forming NADH oxidase is an alkyl hydroperoxide reductase protein. Poole LB; Higuchi M; Shimada M; Calzi ML; Kamio Y Free Radic Biol Med; 2000 Jan; 28(1):108-20. PubMed ID: 10656297 [TBL] [Abstract][Full Text] [Related]
19. Cloning, overexpression, and characterization of peroxiredoxin and NADH peroxiredoxin reductase from Thermus aquaticus. Logan C; Mayhew SG J Biol Chem; 2000 Sep; 275(39):30019-28. PubMed ID: 10862622 [TBL] [Abstract][Full Text] [Related]
20. Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite. Trujillo M; Ferrer-Sueta G; Thomson L; Flohé L; Radi R Subcell Biochem; 2007; 44():83-113. PubMed ID: 18084891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]