BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25737838)

  • 21. Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 2. Cystine disulfides involved in catalysis of peroxide reduction.
    Poole LB
    Biochemistry; 1996 Jan; 35(1):65-75. PubMed ID: 8555199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux.
    König J; Baier M; Horling F; Kahmann U; Harris G; Schürmann P; Dietz KJ
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5738-43. PubMed ID: 11929977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMR studies reveal a novel grab and release mechanism for efficient catalysis of the bacterial 2-Cys peroxiredoxin machinery.
    Nartey W; Basak S; Kamariah N; Manimekalai MS; Robson S; Wagner G; Eisenhaber B; Eisenhaber F; Grüber G
    FEBS J; 2015 Dec; 282(23):4620-38. PubMed ID: 26402142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An NADH-dependent bacterial thioredoxin reductase-like protein in conjunction with a glutaredoxin homologue form a unique peroxiredoxin (AhpC) reducing system in Clostridium pasteurianum.
    Reynolds CM; Meyer J; Poole LB
    Biochemistry; 2002 Feb; 41(6):1990-2001. PubMed ID: 11827546
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical, physicochemical and molecular characterization of a genuine 2-Cys-peroxiredoxin purified from cowpea [Vigna unguiculata (L.) Walpers] leaves.
    Silva FD; Vasconcelos IM; Lobo MD; de Castro PG; Magalhães VG; de Freitas CD; Carlini CR; Pinto PM; Beltramini LM; Filho JH; Barros EB; Alencar LM; Grangeiro TB; Oliveira JT
    Biochim Biophys Acta; 2012 Jul; 1820(7):1128-40. PubMed ID: 23077739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins.
    Poole LB; Ellis HR
    Biochemistry; 1996 Jan; 35(1):56-64. PubMed ID: 8555198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies on NADH oxidase and alkyl hydroperoxide reductase produced by Porphyromonas gingivalis.
    Diaz PI; Zilm PS; Wasinger V; Corthals GL; Rogers AH
    Oral Microbiol Immunol; 2004 Jun; 19(3):137-43. PubMed ID: 15107063
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular biology of oxygen tolerance in lactic acid bacteria: Functions of NADH oxidases and Dpr in oxidative stress.
    Higuchi M; Yamamoto Y; Kamio Y
    J Biosci Bioeng; 2000; 90(5):484-93. PubMed ID: 16232897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase pi with activity changes in both enzymes.
    Ralat LA; Manevich Y; Fisher AB; Colman RF
    Biochemistry; 2006 Jan; 45(2):360-72. PubMed ID: 16401067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium.
    Ellis HR; Poole LB
    Biochemistry; 1997 Oct; 36(43):13349-56. PubMed ID: 9341227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functions of two types of NADH oxidases in energy metabolism and oxidative stress of Streptococcus mutans.
    Higuchi M; Yamamoto Y; Poole LB; Shimada M; Sato Y; Takahashi N; Kamio Y
    J Bacteriol; 1999 Oct; 181(19):5940-7. PubMed ID: 10498705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a mammalian peroxiredoxin that contains one conserved cysteine.
    Kang SW; Baines IC; Rhee SG
    J Biol Chem; 1998 Mar; 273(11):6303-11. PubMed ID: 9497358
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis.
    Madrigal-Matute J; Fernandez-Garcia CE; Blanco-Colio LM; Burillo E; Fortuño A; Martinez-Pinna R; Llamas-Granda P; Beloqui O; Egido J; Zalba G; Martin-Ventura JL
    Free Radic Biol Med; 2015 Sep; 86():352-61. PubMed ID: 26117319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Homologous overexpression of alkyl hydroperoxide reductase subunit C (ahpC) protects Bifidobacterium longum strain NCC2705 from oxidative stress.
    Zuo F; Yu R; Khaskheli GB; Ma H; Chen L; Zeng Z; Mao A; Chen S
    Res Microbiol; 2014 Sep; 165(7):581-9. PubMed ID: 24953679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering peroxiredoxin 3 to facilitate control over self-assembly.
    Conroy F; Rossi T; Ashmead H; Crowther JM; Mitra AK; Gerrard JA
    Biochem Biophys Res Commun; 2019 Apr; 512(2):263-268. PubMed ID: 30885432
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system.
    Jönsson TJ; Ellis HR; Poole LB
    Biochemistry; 2007 May; 46(19):5709-21. PubMed ID: 17441733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disulfide biochemistry in 2-cys peroxiredoxin: requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin.
    Tairum CA; de Oliveira MA; Horta BB; Zara FJ; Netto LE
    J Mol Biol; 2012 Nov; 424(1-2):28-41. PubMed ID: 22985967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low resolution solution structure of an enzymatic active AhpC10:AhpF2 ensemble of the Escherichia coli Alkyl hydroperoxide Reductase.
    Kamariah N; Nartey W; Eisenhaber B; Eisenhaber F; Grüber G
    J Struct Biol; 2016 Jan; 193(1):13-22. PubMed ID: 26584540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification and characterization of NADH oxidase from Serpulina (Treponema) hyodysenteriae.
    Stanton TB; Jensen NS
    J Bacteriol; 1993 May; 175(10):2980-7. PubMed ID: 8491717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystallographic and solution studies of NAD(+)- and NADH-bound alkylhydroperoxide reductase subunit F (AhpF) from Escherichia coli provide insight into sequential enzymatic steps.
    Kamariah N; Manimekalai MS; Nartey W; Eisenhaber F; Eisenhaber B; Grüber G
    Biochim Biophys Acta; 2015 Oct; 1847(10):1139-52. PubMed ID: 26092085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.