These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 25738152)
1. Sample entropy analysis of EEG signals via artificial neural networks to model patients' consciousness level based on anesthesiologists experience. Jiang GJ; Fan SZ; Abbod MF; Huang HH; Lan JY; Tsai FF; Chang HC; Yang YW; Chuang FL; Chiu YF; Jen KK; Wu JF; Shieh JS Biomed Res Int; 2015; 2015():343478. PubMed ID: 25738152 [TBL] [Abstract][Full Text] [Related]
2. EEG Signals Analysis Using Multiscale Entropy for Depth of Anesthesia Monitoring during Surgery through Artificial Neural Networks. Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS Comput Math Methods Med; 2015; 2015():232381. PubMed ID: 26491464 [TBL] [Abstract][Full Text] [Related]
3. EEG artifacts reduction by multivariate empirical mode decomposition and multiscale entropy for monitoring depth of anaesthesia during surgery. Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS Med Biol Eng Comput; 2017 Aug; 55(8):1435-1450. PubMed ID: 27995430 [TBL] [Abstract][Full Text] [Related]
4. Improved spectrum analysis in EEG for measure of depth of anesthesia based on phase-rectified signal averaging. Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS Physiol Meas; 2017 Feb; 38(2):116-138. PubMed ID: 28033111 [TBL] [Abstract][Full Text] [Related]
5. Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia. Gu Y; Liang Z; Hagihira S Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159263 [TBL] [Abstract][Full Text] [Related]
6. Quasi-Periodicities Detection Using Phase-Rectified Signal Averaging in EEG Signals as a Depth of Anesthesia Monitor. Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1773-1784. PubMed ID: 28391200 [TBL] [Abstract][Full Text] [Related]
7. Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition. Madanu R; Rahman F; Abbod MF; Fan SZ; Shieh JS Math Biosci Eng; 2021 Jun; 18(5):5047-5068. PubMed ID: 34517477 [TBL] [Abstract][Full Text] [Related]
8. Differences between state entropy and bispectral index during analysis of identical electroencephalogram signals: a comparison with two randomised anaesthetic techniques. Pilge S; Kreuzer M; Karatchiviev V; Kochs EF; Malcharek M; Schneider G Eur J Anaesthesiol; 2015 May; 32(5):354-65. PubMed ID: 25564779 [TBL] [Abstract][Full Text] [Related]
9. Computational Depth of Anesthesia via Multiple Vital Signs Based on Artificial Neural Networks. Sadrawi M; Fan SZ; Abbod MF; Jen KK; Shieh JS Biomed Res Int; 2015; 2015():536863. PubMed ID: 26568957 [TBL] [Abstract][Full Text] [Related]
10. Depth of anesthesia monitoring in Norway-A web-based survey. Aasheim A; Rosseland LA; Leonardsen AL; Romundstad L Acta Anaesthesiol Scand; 2024 Jul; 68(6):781-787. PubMed ID: 38551019 [TBL] [Abstract][Full Text] [Related]
11. Monitoring the depth of anesthesia using entropy features and an artificial neural network. Shalbaf R; Behnam H; Sleigh JW; Steyn-Ross A; Voss LJ J Neurosci Methods; 2013 Aug; 218(1):17-24. PubMed ID: 23567809 [TBL] [Abstract][Full Text] [Related]
12. Consciousness and depth of anesthesia assessment based on Bayesian analysis of EEG signals. Nguyen-Ky T; Wen PP; Li Y IEEE Trans Biomed Eng; 2013 Jun; 60(6):1488-98. PubMed ID: 23314762 [TBL] [Abstract][Full Text] [Related]
13. EEG signal processing in anaesthesia. Use of a neural network technique for monitoring depth of anaesthesia. Ortolani O; Conti A; Di Filippo A; Adembri C; Moraldi E; Evangelisti A; Maggini M; Roberts SJ Br J Anaesth; 2002 May; 88(5):644-8. PubMed ID: 12067000 [TBL] [Abstract][Full Text] [Related]
14. [Monitoring the depth of anesthesia using a fuzzy neural network based on EEG]. Li M; Ye ZQ Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jul; 30(4):253-5. PubMed ID: 17039930 [TBL] [Abstract][Full Text] [Related]
15. Depth of anaesthesia assessment based on adult electroencephalograph beta frequency band. Li T; Wen P Australas Phys Eng Sci Med; 2016 Sep; 39(3):773-81. PubMed ID: 27323760 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of entropy for monitoring the depth of anesthesia compared with bispectral index: a multicenter clinical trial. Gao JD; Zhao YJ; Xu CS; Zhao J; Huang YG; Wang TL; Pei L; Wang J; Yao LN; Ding Q; Tan ZM; Zhu ZR; Yue Y Chin Med J (Engl); 2012 Apr; 125(8):1389-92. PubMed ID: 22613640 [TBL] [Abstract][Full Text] [Related]
17. A cepstral analysis based method for quantifying the depth of anesthesia from human EEG. Kim TH; Yoon YG; Uhm J; Jeong DW; Yoon SZ; Park SH Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5994-7. PubMed ID: 24111105 [TBL] [Abstract][Full Text] [Related]
18. Time delay of monitors of the hypnotic component of anesthesia: analysis of state entropy and index of consciousness. Kreuzer M; Zanner R; Pilge S; Paprotny S; Kochs EF; Schneider G Anesth Analg; 2012 Aug; 115(2):315-9. PubMed ID: 22584557 [TBL] [Abstract][Full Text] [Related]
19. Automatic anesthesia depth staging using entropy measures and relative power of electroencephalogram frequency bands. Jahanseir M; Setarehdan SK; Momenzadeh S Australas Phys Eng Sci Med; 2018 Dec; 41(4):919-929. PubMed ID: 30338496 [TBL] [Abstract][Full Text] [Related]
20. Analysis of depth of anesthesia with Hilbert-Huang spectral entropy. Li X; Li D; Liang Z; Voss LJ; Sleigh JW Clin Neurophysiol; 2008 Nov; 119(11):2465-75. PubMed ID: 18812265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]