BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 25738183)

  • 21. High-resolution FTIR imaging of colon tissues for elucidation of individual cellular and histopathological features.
    Nallala J; Lloyd GR; Shepherd N; Stone N
    Analyst; 2016 Jan; 141(2):630-9. PubMed ID: 26549223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FTIR bio-spectroscopy scattering correction using natural biological characteristics of different cell lines.
    Hariri S; Barzegari B S; Keshavarz F K; Nikounezhad N; Safaei B; Farnam G; Shirazi FH
    Analyst; 2019 Sep; 144(19):5810-5828. PubMed ID: 31469152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid biodiagnostic ex vivo imaging at 1 μm pixel resolution with thermal source FTIR FPA.
    Findlay CR; Wiens R; Rak M; Sedlmair J; Hirschmugl CJ; Morrison J; Mundy CJ; Kansiz M; Gough KM
    Analyst; 2015 Apr; 140(7):2493-503. PubMed ID: 25600495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resonant Mie scattering in infrared spectroscopy of biological materials--understanding the 'dispersion artefact'.
    Bassan P; Byrne HJ; Bonnier F; Lee J; Dumas P; Gardner P
    Analyst; 2009 Aug; 134(8):1586-93. PubMed ID: 20448924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mie scatter corrections in single cell infrared microspectroscopy.
    Konevskikh T; Lukacs R; Blümel R; Ponossov A; Kohler A
    Faraday Discuss; 2016 Jun; 187():235-57. PubMed ID: 27034998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the potential utility of single-bounce attenuated total reflectance Fourier transform infrared spectroscopy in the analysis of distilled liquors and wines.
    Cocciardi RA; Ismail AA; Sedman J
    J Agric Food Chem; 2005 Apr; 53(8):2803-9. PubMed ID: 15826022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of optical substrates on micro-FTIR analysis of single mammalian cells.
    Wehbe K; Filik J; Frogley MD; Cinque G
    Anal Bioanal Chem; 2013 Feb; 405(4):1311-24. PubMed ID: 23151654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facing the challenge of biosample imaging by FTIR with a synchrotron radiation source.
    Petibois C; Piccinini M; Guidi MC; Marcelli A
    J Synchrotron Radiat; 2010 Jan; 17(1):1-11. PubMed ID: 20029106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All-optical broadband ultrasonography of single cells.
    Dehoux T; Abi Ghanem M; Zouani OF; Rampnoux JM; Guillet Y; Dilhaire S; Durrieu MC; Audoin B
    Sci Rep; 2015 Mar; 5():8650. PubMed ID: 25731090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fourier transform infrared imaging analysis in discrimination studies of squamous cell carcinoma.
    Pallua JD; Pezzei C; Zelger B; Schaefer G; Bittner LK; Huck-Pezzei VA; Schoenbichler SA; Hahn H; Kloss-Brandstaetter A; Kloss F; Bonn GK; Huck CW
    Analyst; 2012 Sep; 137(17):3965-74. PubMed ID: 22792538
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fourier transform infrared imaging analysis in discrimination studies of bladder cancer.
    Pezzei C; Brunner A; Bonn GK; Huck CW
    Analyst; 2013 Oct; 138(19):5719-25. PubMed ID: 23897512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatially resolved IR microspectroscopy of single cells.
    Lasch P; Pacifico A; Diem M
    Biopolymers; 2002; 67(4-5):335-8. PubMed ID: 12012461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectral measurement of acceptor-to-donor extinction coefficient ratio in living cells.
    Zhang J; Yang F; Chai L; Zhang L; Qu J; Chen T
    Micron; 2015 Jan; 68():98-106. PubMed ID: 25464147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High throughput absorbance spectra of cancerous cells: a microscopic investigation of spectral artifacts.
    Mignolet A; Goormaghtigh E
    Analyst; 2015 Apr; 140(7):2393-401. PubMed ID: 25569691
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasound-mediated structural changes in cells revealed by FTIR spectroscopy: a contribution to the optimization of gene and drug delivery.
    Grimaldi P; Di Giambattista L; Giordani S; Udroiu I; Pozzi D; Gaudenzi S; Bedini A; Giliberti C; Palomba R; Castellano AC
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 84(1):74-85. PubMed ID: 21975044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tumor margin identification and prediction of the primary tumor from brain metastases using FTIR imaging and support vector machines.
    Bergner N; Romeike BF; Reichart R; Kalff R; Krafft C; Popp J
    Analyst; 2013 Jul; 138(14):3983-90. PubMed ID: 23563220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new concept to measure cell proliferation using Fourier transform infrared spectroscopy.
    Mfoumou E; Sivakumar N; Yasmeen A; Al Moustafa AE; Stiharu I
    Med Hypotheses; 2012 Aug; 79(2):171-3. PubMed ID: 22617758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of different tissue de-paraffinization procedures for infrared spectral imaging.
    Nallala J; Lloyd GR; Stone N
    Analyst; 2015 Apr; 140(7):2369-75. PubMed ID: 25671463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticles.
    Keles H; Naylor A; Clegg F; Sammon C
    Analyst; 2014 May; 139(10):2355-69. PubMed ID: 24665462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tracking infrared signatures of drugs in cancer cells by Fourier transform microspectroscopy.
    Bellisola G; Della Peruta M; Vezzalini M; Moratti E; Vaccari L; Birarda G; Piccinini M; Cinque G; Sorio C
    Analyst; 2010 Dec; 135(12):3077-86. PubMed ID: 20931110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.