These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 25738185)

  • 1. A gold nanorod-based localized surface plasmon resonance platform for the detection of environmentally toxic metal ions.
    Jayabal S; Pandikumar A; Lim HN; Ramaraj R; Sun T; Huang NM
    Analyst; 2015 Apr; 140(8):2540-55. PubMed ID: 25738185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors.
    Wu C; Xu QH
    Langmuir; 2009 Aug; 25(16):9441-6. PubMed ID: 19382787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of label-free H2O2 based on sensitive Au nanorods as sensor.
    Shan G; Zheng S; Chen S; Chen Y; Liu Y
    Colloids Surf B Biointerfaces; 2013 Feb; 102():327-30. PubMed ID: 23006572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplifying the signal of localized surface plasmon resonance sensing for the sensitive detection of Escherichia coli O157:H7.
    Song L; Zhang L; Huang Y; Chen L; Zhang G; Shen Z; Zhang J; Xiao Z; Chen T
    Sci Rep; 2017 Jun; 7(1):3288. PubMed ID: 28607374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced optical responses of Au@Pd core/shell nanobars.
    Zhang K; Xiang Y; Wu X; Feng L; He W; Liu J; Zhou W; Xie S
    Langmuir; 2009 Jan; 25(2):1162-8. PubMed ID: 19090666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration of the growth process of ultrathin silica shells on the surface of gold nanorods by the localized surface plasmon resonance.
    Li C; Li Y; Ling Y; Lai Y; Wu C; Zhao Y
    Nanotechnology; 2014 Jan; 25(4):045704. PubMed ID: 24394626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly sensitive and selective visual detection of Cr(VI) ions based on etching of silver-coated gold nanorods.
    Kim D; Choi E; Lee C; Choi Y; Kim H; Yu T; Piao Y
    Nano Converg; 2019 Oct; 6(1):34. PubMed ID: 31641881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silica-stabilized gold island films for transmission localized surface plasmon sensing.
    Ruach-Nir I; Bendikov TA; Doron-Mor I; Barkay Z; Vaskevich A; Rubinstein I
    J Am Chem Soc; 2007 Jan; 129(1):84-92. PubMed ID: 17199286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward ultrasensitive and fast colorimetric detection of indoor formaldehyde across the visible region using cetyltrimethylammonium chloride-capped bone-shaped gold nanorods as "chromophores".
    Duan W; Liu A; Li Q; Li Z; Wen CY; Cai Z; Tang S; Li X; Zeng J
    Analyst; 2019 Aug; 144(15):4582-4588. PubMed ID: 31236555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LSPR sensing of molecular biothiols based on noncoupled gold nanorods.
    Li C; Wu C; Zheng J; Lai J; Zhang C; Zhao Y
    Langmuir; 2010 Jun; 26(11):9130-5. PubMed ID: 20426452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion-directed assembly of gold nanorods: a strategy for mercury detection.
    Placido T; Aragay G; Pons J; Comparelli R; Curri ML; Merkoçi A
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):1084-92. PubMed ID: 23305173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectrochemical synthesis, optical properties and plasmon-induced charge separation behaviour of gold nanodumbbells on TiO₂.
    Katagi Y; Kazuma E; Tatsuma T
    Nanoscale; 2014 Nov; 6(23):14543-8. PubMed ID: 25350687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of the surface charges of Au-Ag nanorods: selective detection of iron in the presence of poly(sodium 4-styrenesulfonate).
    Huang YF; Lin YW; Chang HT
    Langmuir; 2007 Dec; 23(25):12777-81. PubMed ID: 17973504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates.
    Smitha SL; Gopchandran KG; Ravindran TR; Prasad VS
    Nanotechnology; 2011 Jul; 22(26):265705. PubMed ID: 21576800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanoparticle probes for the detection of mercury, lead and copper ions.
    Lin YW; Huang CC; Chang HT
    Analyst; 2011 Mar; 136(5):863-71. PubMed ID: 21157604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures.
    Hu KW; Liu TM; Chung KY; Huang KS; Hsieh CT; Sun CK; Yeh CS
    J Am Chem Soc; 2009 Oct; 131(40):14186-7. PubMed ID: 19772320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative platform for transmission localized surface plasmon transducers and its application in detecting heavy metal Pd(II).
    Gao S; Koshizaki N; Koyama E; Tokuhisa H; Sasaki T; Kim JK; Cho Y; Kim DS; Shimizu Y
    Anal Chem; 2009 Sep; 81(18):7703-12. PubMed ID: 19697928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free gold nanorod-based plasmonic sensing of arsenic(iii) in contaminated water.
    Das A; Mohanty S; Kuanr BK
    Analyst; 2019 Aug; 144(15):4708-4718. PubMed ID: 31273371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled preparation of Au/Ag/SnO2 core-shell nanoparticles using a photochemical method and applications in LSPR based sensing.
    Zhou N; Ye C; Polavarapu L; Xu QH
    Nanoscale; 2015 May; 7(19):9025-32. PubMed ID: 25921493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.