These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25738307)

  • 1. Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy.
    Alloyeau D; Dachraoui W; Javed Y; Belkahla H; Wang G; Lecoq H; Ammar S; Ersen O; Wisnet A; Gazeau F; Ricolleau C
    Nano Lett; 2015 Apr; 15(4):2574-81. PubMed ID: 25738307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Growth and Shape Evolution of Indium Nanoplates Studied by In Situ Liquid Cell TEM.
    Tian J; Lin D; Li X; Wang K; Yu B; Li M; Hou S; Li Z; Chen Q
    Small; 2024 Nov; 20(46):e2400680. PubMed ID: 39126237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative In Situ Visualization of Thermal Effects on the Formation of Gold Nanocrystals in Solution.
    Khelfa A; Nelayah J; Amara H; Wang G; Ricolleau C; Alloyeau D
    Adv Mater; 2021 Sep; 33(38):e2102514. PubMed ID: 34338365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiolysis-Driven Evolution of Gold Nanostructures - Model Verification by Scale Bridging In Situ Liquid-Phase Transmission Electron Microscopy and X-Ray Diffraction.
    Fritsch B; Zech TS; Bruns MP; Körner A; Khadivianazar S; Wu M; Zargar Talebi N; Virtanen S; Unruh T; Jank MPM; Spiecker E; Hutzler A
    Adv Sci (Weinh); 2022 Sep; 9(25):e2202803. PubMed ID: 35780494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the Formation of Symmetric Gold Nanostars by Liquid-Cell Transmission Electron Microscopy.
    Ahmad N; Wang G; Nelayah J; Ricolleau C; Alloyeau D
    Nano Lett; 2017 Jul; 17(7):4194-4201. PubMed ID: 28628329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with
    Wang M; Leff AC; Li Y; Woehl TJ
    ACS Nano; 2021 Feb; 15(2):2578-2588. PubMed ID: 33496576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Kinetic and Thermodynamic Growth Control of Au-Pd Core-Shell Nanoparticles.
    Tan SF; Bisht G; Anand U; Bosman M; Yong XE; Mirsaidov U
    J Am Chem Soc; 2018 Sep; 140(37):11680-11685. PubMed ID: 30099870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing.
    Beeram SR; Zamborini FP
    ACS Nano; 2010 Jul; 4(7):3633-46. PubMed ID: 20575510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochemical Synthesis and Catalytic Applications of Gold Nanoplates Fabricated Using Quercetin Diphosphate Macromolecules.
    Osonga FJ; Kariuki VM; Wambua VM; Kalra S; Nweke B; Miller RM; Çeşme M; Sadik OA
    ACS Omega; 2019 Apr; 4(4):6511-6520. PubMed ID: 31179406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimode Electron Tomography as a Tool to Characterize the Internal Structure and Morphology of Gold Nanoparticles.
    Winckelmans N; Altantzis T; Grzelczak M; Sánchez-Iglesias A; Liz-Marzán LM; Bals S
    J Phys Chem C Nanomater Interfaces; 2018 Jun; 122(25):13522-13528. PubMed ID: 29983841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of high-yield biological synthesis of single-crystalline gold nanoplates.
    Liu B; Xie J; Lee JY; Ting YP; Chen JP
    J Phys Chem B; 2005 Aug; 109(32):15256-63. PubMed ID: 16852932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon nanowire oxidation: the influence of sidewall structure and gold distribution.
    Sivakov VA; Scholz R; Syrowatka F; Falk F; Gösele U; Christiansen SH
    Nanotechnology; 2009 Oct; 20(40):405607. PubMed ID: 19738306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length.
    Miranda A; Malheiro E; Skiba E; Quaresma P; Carvalho PA; Eaton P; de Castro B; Shelnutt JA; Pereira E
    Nanoscale; 2010 Oct; 2(10):2209-16. PubMed ID: 20714654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step synthesis and characterisation of chitosan-mediated micro-sized gold nanoplates through a thermal process.
    Yang K; Wang X; Zhou Z; Xu J; Weng J; Zhang Q
    IET Nanobiotechnol; 2007 Dec; 1(6):107-11. PubMed ID: 18035912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of alkylated polyethylenimines on the formation of gold nanoplates.
    Chen CC; Hsu CH; Kuo PL
    Langmuir; 2007 Jun; 23(12):6801-6. PubMed ID: 17480111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of gold nanoparticles in a free-standing ionic liquid triggered by heat and electron irradiation.
    Keller D; Henninen TR; Erni R
    Micron; 2019 Feb; 117():16-21. PubMed ID: 30419432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective cleavage of periodic mesoscale structures: two-dimensional replication of binary colloidal crystals into dimpled gold nanoplates.
    Kuroda Y; Sakamoto Y; Kuroda K
    J Am Chem Soc; 2012 May; 134(20):8684-92. PubMed ID: 22524635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone).
    Lim B; Camargo PH; Xia Y
    Langmuir; 2008 Sep; 24(18):10437-42. PubMed ID: 18712890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Dynamics of Galvanic Replacement Reactions of Silver Nanocubes and Au Studied by Liquid-Cell Transmission Electron Microscopy.
    Tan SF; Lin G; Bosman M; Mirsaidov U; Nijhuis CA
    ACS Nano; 2016 Aug; 10(8):7689-95. PubMed ID: 27389989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-Step Synthesis of Tunable-Size Gold Nanoplates on Graphene Multilayers.
    Xin W; Severino J; De Rosa IM; Yu D; Mckay J; Ye P; Yin X; Yang JM; Carlson L; Kodambaka S
    Nano Lett; 2018 Mar; 18(3):1875-1881. PubMed ID: 29406754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.