These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 25738388)
1. The Facilitatory Effect of Casearia sylvestris Sw. (guaçatonga) Fractions on the Contractile Activity of Mammalian and Avian Neuromuscular Apparatus. Werner AC; Ferraz MC; Yoshida EH; Tribuiani N; Gautuz JA; Santana MN; Dezzotti BA; de Miranda VG; Foramiglio AL; Rostelato-Ferreira S; da Silva Tavares RV; Hyslop S; Oshima-Franco Y Curr Pharm Biotechnol; 2015 Mar; ():. PubMed ID: 25738388 [TBL] [Abstract][Full Text] [Related]
2. The facilitatory effect of Casearia sylvestris Sw. (guaçatonga) fractions on the contractile activity of mammalian and avian neuromuscular apparatus. Werner AC; Ferraz MC; Yoshida EH; Tribuiani N; Gautuz JA; Santana MN; Dezzotti BA; de Miranda VG; Foramiglio AL; Rostelato-Ferreira S; Tavares RV; Hyslop S; Oshima-Franco Y Curr Pharm Biotechnol; 2015; 16(5):468-81. PubMed ID: 25751174 [TBL] [Abstract][Full Text] [Related]
3. A Highly Polar Phytocomplex Involving Rutin is Responsible for the Neuromuscular Facilitation Caused by Casearia sylvestris (guaçatonga). Yoshida EH; Tribuiani N; Foramiglio AL; Foramiglio CA; da Silva Tavares RV; Bonomini TJ; Bueno PCP; Cavalheiro AJ; Hyslop S; Puebla P; Feliciano AS; Oshima-Franco Y Curr Pharm Biotechnol; 2016; 17(15):1360-1368. PubMed ID: 27855599 [TBL] [Abstract][Full Text] [Related]
4. The theaflavin fraction is responsible for the facilitatory effect of black tea at the skeletal myoneural junction. Basu S; Chaudhuri T; Chauhan SP; Das Gupta AK; Chaudhury L; Vedasiromoni JR Life Sci; 2005 May; 76(26):3081-8. PubMed ID: 15850600 [TBL] [Abstract][Full Text] [Related]
5. Multi targets of cannabidiol (CBD) on skeletal mammalian and avian neuromuscular preparations. Castro-da-Silva MLR; Farias-de-França AP; Ravazoli I; Oliveira KC; Orsi VC; Yoshida EH; Tavares RVDS; Oshima-Franco Y Nat Prod Res; 2023 Dec; ():1-10. PubMed ID: 38054804 [TBL] [Abstract][Full Text] [Related]
6. Neurotoxicity of Micrurus lemniscatus lemniscatus (South American coralsnake) venom in vertebrate neuromuscular preparations in vitro and neutralization by antivenom. Floriano RS; Schezaro-Ramos R; Silva NJ; Bucaretchi F; Rowan EG; Hyslop S Arch Toxicol; 2019 Jul; 93(7):2065-2086. PubMed ID: 31123802 [TBL] [Abstract][Full Text] [Related]
7. Facilitation by 3,4-diaminopyridine of regenerative acetylcholine release from mouse motor nerve. Hong SJ; Chang CC Br J Pharmacol; 1990 Dec; 101(4):793-8. PubMed ID: 1964819 [TBL] [Abstract][Full Text] [Related]
8. Presynaptic muscarinic and adenosine receptors are involved in 2 Hz-induced train-of-four fade caused by antinicotinic neuromuscular relaxants in the rat. Pereira M; Bornia E; Correia-de-Sá P; Alves-Do-Prado W Clin Exp Pharmacol Physiol; 2011 Nov; 38(11):764-70. PubMed ID: 21848867 [TBL] [Abstract][Full Text] [Related]
10. Prejunctional modulation of acetylcholine release from the skeletal neuromuscular junction: link between positive (nicotinic)- and negative (muscarinic)-feedback modulation. Vizi ES; Somogyi GT Br J Pharmacol; 1989 May; 97(1):65-70. PubMed ID: 2720313 [TBL] [Abstract][Full Text] [Related]
11. Interactions of nifedipine and diltiazem with muscle relaxants and reversal of neuromuscular blockade with edrophonium and neostigmine. Wali FA J Pharmacol; 1986; 17(3):244-53. PubMed ID: 3795969 [TBL] [Abstract][Full Text] [Related]
12. In Situ Effects of Doxycycline on Neuromuscular Junction in Mice. Tribuiani N; de Souza J; de Queiroz Junior MA; Baldo DA; de Campos Orsi V; Oshima-Franco Y Curr Mol Med; 2022; 22(4):349-353. PubMed ID: 34355683 [TBL] [Abstract][Full Text] [Related]
13. Action of Micrurus dumerilii carinicauda coral snake venom on the mammalian neuromuscular junction. Serafim FG; Reali M; Cruz-Höfling MA; Fontana MD Toxicon; 2002 Feb; 40(2):167-74. PubMed ID: 11689238 [TBL] [Abstract][Full Text] [Related]
14. Phenthonium, a quaternary derivative of (-)-hyoscyamine, enhances the spontaneous release of acetylcholine at rat motor nerve terminals. Fann ML; Souccar C; Lapa AJ Br J Pharmacol; 1990 Jul; 100(3):441-6. PubMed ID: 2390670 [TBL] [Abstract][Full Text] [Related]
15. Nicotinic actions of oxotremorine on murine skeletal muscle. Evidence against muscarinic modulation of acetylcholine release. Hong SJ; Chang CC Brain Res; 1990 Nov; 534(1-2):142-8. PubMed ID: 2073579 [TBL] [Abstract][Full Text] [Related]
16. Acetylcholine hydrolysis during neuromuscular transmission in the synaptic cleft of skeletal muscle of mouse and chick. Chang CC; Hong SJ; Lin HL; Su MJ Neuropharmacology; 1985 Jun; 24(6):533-9. PubMed ID: 2991804 [TBL] [Abstract][Full Text] [Related]
17. Tetanic Facilitation of Neuromuscular Transmission by Adenosine A2A and Muscarinic M1 Receptors is Dependent on the Uptake of Choline via High-Affinity Transporters. Castellão-Santana LM; Yumi Abiko P; Ambiel CR; Peixoto AR; Noronha-Matos JB; Correia-de-Sá P; Alves-Do-Prado W Pharmacology; 2019; 103(1-2):38-49. PubMed ID: 30380560 [TBL] [Abstract][Full Text] [Related]
18. Calcium and neostigmine antagonize gentamicin, but augment clindamycin-induced tetanic fade in rat phrenic nerve-hemidiaphragm preparations. Lee SI; Lee JH; Lee SC; Lee JM; Lee JH J Anesth; 2008; 22(4):385-90. PubMed ID: 19011777 [TBL] [Abstract][Full Text] [Related]
19. Pharmacological and structural characterization of a novel phospholipase A2 from Micrurus dumerilii carinicauda venom. Belo CA; Leite GB; Toyama MH; Marangoni S; Corrado AP; Fontana MD; Southan A; Rowan EG; Hyslop S; Rodrigues-Simioni L Toxicon; 2005 Dec; 46(7):736-50. PubMed ID: 16198388 [TBL] [Abstract][Full Text] [Related]
20. Reversal by cysteine of the cadmium-induced block of skeletal neuromuscular transmission in vitro. Braga MF; Rowan EG Br J Pharmacol; 1992 Sep; 107(1):95-100. PubMed ID: 1330169 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]