These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Cdk5rap1-mediated 2-methylthio-N6-isopentenyladenosine modification is absent from nuclear-derived RNA species. Fakruddin M; Wei FY; Emura S; Matsuda S; Yasukawa T; Kang D; Tomizawa K Nucleic Acids Res; 2017 Nov; 45(20):11954-11961. PubMed ID: 28981754 [TBL] [Abstract][Full Text] [Related]
4. A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Suzuki T; Suzuki T Nucleic Acids Res; 2014 Jun; 42(11):7346-57. PubMed ID: 24831542 [TBL] [Abstract][Full Text] [Related]
5. Posttranscriptional modifications in mitochondrial tRNA and its implication in mitochondrial translation and disease. Kazuhito T; Wei FY J Biochem; 2020 Nov; 168(5):435-444. PubMed ID: 32818253 [TBL] [Abstract][Full Text] [Related]
6. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease. Bohnsack MT; Sloan KE Cell Mol Life Sci; 2018 Jan; 75(2):241-260. PubMed ID: 28752201 [TBL] [Abstract][Full Text] [Related]
7. Cdk5 regulatory subunit-associated protein 1 knockout mice show hearing loss phenotypically similar to age-related hearing loss. Miwa T; Wei FY; Tomizawa K Mol Brain; 2021 May; 14(1):82. PubMed ID: 34001214 [TBL] [Abstract][Full Text] [Related]
8. Lack of tRNA-i6A modification causes mitochondrial-like metabolic deficiency in S. pombe by limiting activity of cytosolic tRNATyr, not mito-tRNA. Lamichhane TN; Arimbasseri AG; Rijal K; Iben JR; Wei FY; Tomizawa K; Maraia RJ RNA; 2016 Apr; 22(4):583-96. PubMed ID: 26857223 [TBL] [Abstract][Full Text] [Related]
9. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Suzuki T; Nagao A; Suzuki T Annu Rev Genet; 2011; 45():299-329. PubMed ID: 21910628 [TBL] [Abstract][Full Text] [Related]
10. Complete chemical structures of human mitochondrial tRNAs. Suzuki T; Yashiro Y; Kikuchi I; Ishigami Y; Saito H; Matsuzawa I; Okada S; Mito M; Iwasaki S; Ma D; Zhao X; Asano K; Lin H; Kirino Y; Sakaguchi Y; Suzuki T Nat Commun; 2020 Aug; 11(1):4269. PubMed ID: 32859890 [TBL] [Abstract][Full Text] [Related]
11. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA. Yarham JW; Lamichhane TN; Pyle A; Mattijssen S; Baruffini E; Bruni F; Donnini C; Vassilev A; He L; Blakely EL; Griffin H; Santibanez-Koref M; Bindoff LA; Ferrero I; Chinnery PF; McFarland R; Maraia RJ; Taylor RW PLoS Genet; 2014 Jun; 10(6):e1004424. PubMed ID: 24901367 [TBL] [Abstract][Full Text] [Related]
12. Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. Suzuki T; Nagao A; Suzuki T Wiley Interdiscip Rev RNA; 2011; 2(3):376-86. PubMed ID: 21957023 [TBL] [Abstract][Full Text] [Related]
13. 2-Methylthio Conversion of N6-Isopentenyladenosine in Mitochondrial tRNAs by CDK5RAP1 Promotes the Maintenance of Glioma-Initiating Cells. Yamamoto T; Fujimura A; Wei FY; Shinojima N; Kuroda JI; Mukasa A; Tomizawa K iScience; 2019 Nov; 21():42-56. PubMed ID: 31654853 [TBL] [Abstract][Full Text] [Related]
14. Tissue-specific expression atlas of murine mitochondrial tRNAs. He Q; He X; Xiao Y; Zhao Q; Ye Z; Cui L; Chen Y; Guan MX J Biol Chem; 2021 Aug; 297(2):100960. PubMed ID: 34265302 [TBL] [Abstract][Full Text] [Related]