These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 25738501)

  • 1. Intake of hydrolyzed casein is associated with reduced body fat accretion and enhanced phase II metabolism in obesity prone C57BL/6J mice.
    Clausen MR; Zhang X; Yde CC; Ditlev DB; Lillefosse HH; Madsen L; Kristiansen K; Liaset B; Bertram HC
    PLoS One; 2015; 10(3):e0118895. PubMed ID: 25738501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Urinary loss of tricarboxylic acid cycle intermediates as revealed by metabolomics studies: an underlying mechanism to reduce lipid accretion by whey protein ingestion?
    Lillefosse HH; Clausen MR; Yde CC; Ditlev DB; Zhang X; Du ZY; Bertram HC; Madsen L; Kristiansen K; Liaset B
    J Proteome Res; 2014 May; 13(5):2560-70. PubMed ID: 24702026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolyzed casein reduces diet-induced obesity in male C57BL/6J mice.
    Lillefosse HH; Tastesen HS; Du ZY; Ditlev DB; Thorsen FA; Madsen L; Kristiansen K; Liaset B
    J Nutr; 2013 Sep; 143(9):1367-75. PubMed ID: 23843475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mixture of cod and scallop protein reduces adiposity and improves glucose tolerance in high-fat fed male C57BL/6J mice.
    Tastesen HS; Rønnevik AK; Borkowski K; Madsen L; Kristiansen K; Liaset B
    PLoS One; 2014; 9(11):e112859. PubMed ID: 25390887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice.
    Kübeck R; Bonet-Ripoll C; Hoffmann C; Walker A; Müller VM; Schüppel VL; Lagkouvardos I; Scholz B; Engel KH; Daniel H; Schmitt-Kopplin P; Haller D; Clavel T; Klingenspor M
    Mol Metab; 2016 Dec; 5(12):1162-1174. PubMed ID: 27900259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of casein, hydrolyzed casein, and whey proteins on urinary and postprandial plasma metabolites in overweight and moderately obese human subjects.
    Schmedes M; Bendtsen LQ; Gomes S; Liaset B; Holst JJ; Ritz C; Reitelseder S; Sjödin A; Astrup A; Young JF; Sundekilde UK; Bertram HC
    J Sci Food Agric; 2018 Dec; 98(15):5598-5605. PubMed ID: 29696654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green tea changes serum and liver metabolomic profiles in mice with high-fat diet-induced obesity.
    Lee LS; Choi JH; Sung MJ; Hur JY; Hur HJ; Park JD; Kim YC; Gu EJ; Min B; Kim HJ
    Mol Nutr Food Res; 2015 Apr; 59(4):784-94. PubMed ID: 25631872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Effects of Dietary Fat Content and Protein Source on Bone Phenotype and Fatty Acid Oxidation in Female C57Bl/6 Mice.
    Sawin EA; Stroup BM; Murali SG; O'Neill LM; Ntambi JM; Ney DM
    PLoS One; 2016; 11(10):e0163234. PubMed ID: 27695036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic inflammation exacerbates glucose metabolism disorders in C57BL/6J mice fed with high-fat diet.
    Wu Y; Wu T; Wu J; Zhao L; Li Q; Varghese Z; Moorhead JF; Powis SH; Chen Y; Ruan XZ
    J Endocrinol; 2013 Dec; 219(3):195-204. PubMed ID: 24029730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-chain polyunsaturated fatty acids and extensively hydrolyzed casein-induced browning in a Ucp-1 reporter mouse model of obesity.
    Mao L; Lei J; Schoemaker MH; Ma B; Zhong Y; Lambers TT; Van Tol EAF; Zhou Y; Nie T; Wu D
    Food Funct; 2018 Apr; 9(4):2362-2373. PubMed ID: 29589625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Betaine supplementation causes increase in carnitine metabolites in the muscle and liver of mice fed a high-fat diet as studied by nontargeted LC-MS metabolomics approach.
    Pekkinen J; Olli K; Huotari A; Tiihonen K; Keski-Rahkonen P; Lehtonen M; Auriola S; Kolehmainen M; Mykkänen H; Poutanen K; Hanhineva K
    Mol Nutr Food Res; 2013 Nov; 57(11):1959-68. PubMed ID: 23868375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-term time-restricted feeding during the resting phase is sufficient to induce leptin resistance that contributes to development of obesity and metabolic disorders in mice.
    Oishi K; Hashimoto C
    Chronobiol Int; 2018 Oct; 35(11):1576-1594. PubMed ID: 30084652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Krill powder increases liver lipid catabolism and reduces glucose mobilization in tumor necrosis factor-alpha transgenic mice fed a high-fat diet.
    Bjørndal B; Vik R; Brattelid T; Vigerust NF; Burri L; Bohov P; Nygård O; Skorve J; Berge RK
    Metabolism; 2012 Oct; 61(10):1461-72. PubMed ID: 22538117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The protein source determines the potential of high protein diets to attenuate obesity development in C57BL/6J mice.
    Liisberg U; Myrmel LS; Fjære E; Rønnevik AK; Bjelland S; Fauske KR; Holm JB; Basse AL; Hansen JB; Liaset B; Kristiansen K; Madsen L
    Adipocyte; 2016; 5(2):196-211. PubMed ID: 27386160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whey protein isolate counteracts the effects of a high-fat diet on energy intake and hypothalamic and adipose tissue expression of energy balance-related genes.
    McAllan L; Keane D; Schellekens H; Roche HM; Korpela R; Cryan JF; Nilaweera KN
    Br J Nutr; 2013 Dec; 110(11):2114-26. PubMed ID: 23731955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic inflammation aggravates metabolic disorders of hepatic fatty acids in high-fat diet-induced obese mice.
    Zhao L; Zhong S; Qu H; Xie Y; Cao Z; Li Q; Yang P; Varghese Z; Moorhead JF; Chen Y; Ruan XZ
    Sci Rep; 2015 May; 5():10222. PubMed ID: 25974206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired adipogenesis in adipose tissue associated with hepatic lipid deposition induced by chronic inflammation in mice with chew diet.
    Yang S; Zhang W; Zhen Q; Gao R; Du T; Xiao X; Wang Z; Ge Q; Hu J; Ye P; Zhu Q; Li Q
    Life Sci; 2015 Sep; 137():7-13. PubMed ID: 26188592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of Gastric Transit Function Driven by Hydrolyzed Casein Increases Small Intestinal Carbohydrate Availability and Its Microbial Metabolism.
    Shen J; Mu C; Wang H; Huang Z; Yu K; Zoetendal EG; Zhu W
    Mol Nutr Food Res; 2020 Nov; 64(21):e2000250. PubMed ID: 32945612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obese Mice Fed a Diet Supplemented with Enzyme-Treated Wheat Bran Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria.
    Kieffer DA; Piccolo BD; Marco ML; Kim EB; Goodson ML; Keenan MJ; Dunn TN; Knudsen KE; Adams SH; Martin RJ
    J Nutr; 2016 Dec; 146(12):2445-2460. PubMed ID: 27798344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid-derived betaines dominate as urinary markers for rye bran intake in mice fed high-fat diet--A nontargeted metabolomics study.
    Pekkinen J; Rosa-Sibakov N; Micard V; Keski-Rahkonen P; Lehtonen M; Poutanen K; Mykkänen H; Hanhineva K
    Mol Nutr Food Res; 2015 Aug; 59(8):1550-62. PubMed ID: 25944556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.