These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 25738695)

  • 21. Three-Dimensional Paper-Based Microfluidic Analytical Devices Integrated with a Plasma Separation Membrane for the Detection of Biomarkers in Whole Blood.
    Park C; Kim HR; Kim SK; Jeong IK; Pyun JC; Park S
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36428-36434. PubMed ID: 31512861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid prototyping using 3D printing in bioanalytical research.
    Zhang C; Bills BJ; Manicke NE
    Bioanalysis; 2017 Feb; 9(4):329-331. PubMed ID: 28071134
    [No Abstract]   [Full Text] [Related]  

  • 24. The recent development and applications of fluidic channels by 3D printing.
    Zhou Y
    J Biomed Sci; 2017 Oct; 24(1):80. PubMed ID: 29047370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices.
    Quero RF; Domingos da Silveira G; Fracassi da Silva JA; Jesus DP
    Lab Chip; 2021 Sep; 21(19):3715-3729. PubMed ID: 34355724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices.
    Beauchamp MJ; Nordin GP; Woolley AT
    Anal Bioanal Chem; 2017 Jul; 409(18):4311-4319. PubMed ID: 28612085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrated biocompatible 3D printed isoporous membranes with 7 μm pores.
    Viglione MS; Saxton A; Downs D; Woolley AT; Christensen KA; Van Ry PM; Nordin GP
    Lab Chip; 2024 Apr; 24(8):2202-2207. PubMed ID: 38525691
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing.
    Ruiz C; Kadimisetty K; Yin K; Mauk MG; Zhao H; Liu C
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32492980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct 3D-printing of cell-laden constructs in microfluidic architectures.
    Liu J; Hwang HH; Wang P; Whang G; Chen S
    Lab Chip; 2016 Apr; 16(8):1430-8. PubMed ID: 26980159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Macro-to-micro interfacing to microfluidic channels using 3D-printed templates: application to time-resolved secretion sampling of endocrine tissue.
    Brooks JC; Ford KI; Holder DH; Holtan MD; Easley CJ
    Analyst; 2016 Oct; 141(20):5714-5721. PubMed ID: 27486597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printed mold leachates in PDMS microfluidic devices.
    de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N
    Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High density 3D printed microfluidic valves, pumps, and multiplexers.
    Gong H; Woolley AT; Nordin GP
    Lab Chip; 2016 Jul; 16(13):2450-8. PubMed ID: 27242064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications.
    Milton LA; Viglione MS; Ong LJY; Nordin GP; Toh YC
    Lab Chip; 2023 Aug; 23(16):3537-3560. PubMed ID: 37476860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell adhesion and proliferation on common 3D printing materials used in stereolithography of microfluidic devices.
    Piironen K; Haapala M; Talman V; Järvinen P; Sikanen T
    Lab Chip; 2020 Jun; 20(13):2372-2382. PubMed ID: 32500123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid prototyping of thermoplastic microfluidic devices via SLA 3D printing.
    Khoo H; Allen WS; Arroyo-Currás N; Hur SC
    Sci Rep; 2024 Jul; 14(1):17646. PubMed ID: 39085631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D printed microfluidic circuitry via multijet-based additive manufacturing.
    Sochol RD; Sweet E; Glick CC; Venkatesh S; Avetisyan A; Ekman KF; Raulinaitis A; Tsai A; Wienkers A; Korner K; Hanson K; Long A; Hightower BJ; Slatton G; Burnett DC; Massey TL; Iwai K; Lee LP; Pister KS; Lin L
    Lab Chip; 2016 Feb; 16(4):668-78. PubMed ID: 26725379
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybrid Printing of Fully Integrated Microfluidic Devices for Biosensing.
    Du Y; Reitemeier J; Jiang Q; Bappy MO; Bohn PW; Zhang Y
    Small; 2024 Feb; 20(5):e2304966. PubMed ID: 37752777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing.
    Musgrove HB; Catterton MA; Pompano RR
    Anal Chim Acta; 2022 May; 1209():339842. PubMed ID: 35569850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.