These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 25738695)

  • 81. A Low-Cost 3-in-1 3D Printer as a Tool for the Fabrication of Flow-Through Channels of Microfluidic Systems.
    Thaweskulchai T; Schulte A
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442569
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Desktop-Stereolithography 3D-Printing of a Poly(dimethylsiloxane)-Based Material with Sylgard-184 Properties.
    Bhattacharjee N; Parra-Cabrera C; Kim YT; Kuo AP; Folch A
    Adv Mater; 2018 May; 30(22):e1800001. PubMed ID: 29656459
    [TBL] [Abstract][Full Text] [Related]  

  • 83. 3D printing direct to industrial roll-to-roll casting for fast prototyping of scalable microfluidic systems.
    Boutiette AL; Toothaker C; Corless B; Boukaftane C; Howell C
    PLoS One; 2020; 15(12):e0244324. PubMed ID: 33370381
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.
    Pearce JM; Anzalone NC; Heldt CL
    J Lab Autom; 2016 Aug; 21(4):510-6. PubMed ID: 26763294
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Print your own membrane: direct rapid prototyping of polydimethylsiloxane.
    Femmer T; Kuehne AJ; Wessling M
    Lab Chip; 2014 Aug; 14(15):2610-3. PubMed ID: 24828586
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Optically induced dielectropheresis sorting with automated medium exchange in an integrated optofluidic device resulting in higher cell viability.
    Lee GB; Wu HC; Yang PF; Mai JD
    Lab Chip; 2014 Aug; 14(15):2837-43. PubMed ID: 24911448
    [TBL] [Abstract][Full Text] [Related]  

  • 87. High-Precision Stereolithography of Biomicrofluidic Devices.
    Kuo AP; Bhattacharjee N; Lee YS; Castro K; Kim YT; Folch A
    Adv Mater Technol; 2019 Jun; 4(6):. PubMed ID: 32490168
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Engineering 3D parallelized microfluidic droplet generators with equal flow profiles by computational fluid dynamics and stereolithographic printing.
    Kamperman T; Teixeira LM; Salehi SS; Kerckhofs G; Guyot Y; Geven M; Geris L; Grijpma D; Blanquer S; Leijten J
    Lab Chip; 2020 Feb; 20(3):490-495. PubMed ID: 31841123
    [TBL] [Abstract][Full Text] [Related]  

  • 89. 3D printed microfluidic devices for lipid bilayer recordings.
    Ogishi K; Osaki T; Morimoto Y; Takeuchi S
    Lab Chip; 2022 Mar; 22(5):890-898. PubMed ID: 35133381
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Programmed Internal Reconfigurations in a 3D-Printed Mechanical Metamaterial Enable Fluidic Control for a Vertically Stacked Valve Array.
    Supakar T; Space D; Meija S; Tan RY; Alston JR; Josephs EA
    Adv Funct Mater; 2024 Aug; 34(32):. PubMed ID: 39431220
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips.
    Kotz F; Helmer D; Rapp BE
    Adv Biochem Eng Biotechnol; 2022; 179():37-66. PubMed ID: 32797271
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Personalized development of human organs using 3D printing technology.
    Radenkovic D; Solouk A; Seifalian A
    Med Hypotheses; 2016 Feb; 87():30-3. PubMed ID: 26826637
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Portable all-in-one automated microfluidic system (PAMICON) with 3D-printed chip using novel fluid control mechanism.
    Zhang Y; Tseng TM; Schlichtmann U
    Sci Rep; 2021 Sep; 11(1):19189. PubMed ID: 34584118
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Evaluating 3D printing to solve the sample-to-device interface for LRS and POC diagnostics: example of an interlock meter-mix device for metering and lysing clinical urine samples.
    Jue E; Schoepp NG; Witters D; Ismagilov RF
    Lab Chip; 2016 May; 16(10):1852-60. PubMed ID: 27122199
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A 3D-Printed Oxygen Control Insert for a 24-Well Plate.
    Brennan MD; Rexius-Hall ML; Eddington DT
    PLoS One; 2015; 10(9):e0137631. PubMed ID: 26360882
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Biotinylated Photopolymers for 3D-Printed Unibody Lab-on-a-Chip Optical Platforms.
    Credi C; Griffini G; Levi M; Turri S
    Small; 2018 Jan; 14(1):. PubMed ID: 29141120
    [TBL] [Abstract][Full Text] [Related]  

  • 98. 3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design.
    Balakrishnan HK; Badar F; Doeven EH; Novak JI; Merenda A; Dumée LF; Loy J; Guijt RM
    Anal Chem; 2021 Jan; 93(1):350-366. PubMed ID: 33263392
    [TBL] [Abstract][Full Text] [Related]  

  • 99. High-performance microchip electrophoresis separations of preterm birth biomarkers using 3D printed microfluidic devices.
    Esene JE; Nasman PR; Miner DS; Nordin GP; Woolley AT
    J Chromatogr A; 2023 Sep; 1706():464242. PubMed ID: 37595419
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Emerging Anti-Fouling Methods: Towards Reusability of 3D-Printed Devices for Biomedical Applications.
    Lepowsky E; Tasoglu S
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.