These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25738818)

  • 1. Consequences of warming and resource quality on the stoichiometry and nutrient cycling of a stream shredder.
    Mas-Martí E; Romaní AM; Muñoz I
    PLoS One; 2015; 10(3):e0118520. PubMed ID: 25738818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convergence of detrital stoichiometry predicts thresholds of nutrient-stimulated breakdown in streams.
    Manning DW; Rosemond AD; Gulis V; Benstead JP; Kominoski JS; Maerz JC
    Ecol Appl; 2016 Sep; 26(6):1745-1757. PubMed ID: 27755690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth and stoichiometry of a common aquatic detritivore respond to changes in resource stoichiometry.
    Fuller CL; Evans-White MA; Entrekin SA
    Oecologia; 2015 Mar; 177(3):837-848. PubMed ID: 25428786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warming overrides eutrophication effects on leaf litter decomposition in stream microcosms.
    Pérez J; Cornejo A; Alonso A; Guerra A; García G; Nieto C; Correa-Araneda F; Rojo D; Boyero L
    Environ Pollut; 2023 Sep; 332():121966. PubMed ID: 37290635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetic mismatch induced by warming decreases leaf litter decomposition by aquatic detritivores.
    Réveillon T; Rota T; Chauvet É; Lecerf A; Sentis A
    J Anim Ecol; 2022 Oct; 91(10):1975-1987. PubMed ID: 35471565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat it up to slow it down: Individual energetics reveal how warming reduces stream decomposition.
    Jochum M
    J Anim Ecol; 2022 Oct; 91(10):1944-1947. PubMed ID: 36193670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing wastewater treatment plant effluent effects on microbial and detritivore performance: A combined field and laboratory experiment.
    Solagaistua L; de Guzmán I; Barrado M; Mijangos L; Etxebarria N; García-Baquero G; Larrañaga A; von Schiller D; Elosegi A
    Aquat Toxicol; 2018 Oct; 203():159-171. PubMed ID: 30138800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive effects of warming and microplastics on metabolism but not feeding rates of a key freshwater detritivore.
    Kratina P; Watts TJ; Green DS; Kordas RL; O'Gorman EJ
    Environ Pollut; 2019 Dec; 255(Pt 2):113259. PubMed ID: 31563782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detrital stoichiometry as a critical nexus for the effects of streamwater nutrients on leaf litter breakdown rates.
    Manning DW; Rosemond AD; Kominoski JS; Gulis V; Benstead JP; Maerz JC
    Ecology; 2015 Aug; 96(8):2214-24. PubMed ID: 26405746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrients stimulate leaf breakdown rates and detritivore biomass: bottom-up effects via heterotrophic pathways.
    Greenwood JL; Rosemond AD; Wallace JB; Cross WF; Weyers HS
    Oecologia; 2007 Apr; 151(4):637-49. PubMed ID: 17146682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between large and small detritivores influence how biodiversity impacts litter decomposition.
    Tonin AM; Pozo J; Monroy S; Basaguren A; Pérez J; Gonçalves JF; Pearson R; Cardinale BJ; Boyero L
    J Anim Ecol; 2018 Sep; 87(5):1465-1474. PubMed ID: 29928758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quality and quantity of leaf litter: Both are important for feeding preferences and growth of an aquatic shredder.
    Arias-Real R; Menéndez M; Abril M; Oliva F; Muñoz I
    PLoS One; 2018; 13(12):e0208272. PubMed ID: 30540796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreasing Stoichiometric Resource Quality Drives Compensatory Feeding across Trophic Levels in Tropical Litter Invertebrate Communities.
    Jochum M; Barnes AD; Ott D; Lang B; Klarner B; Farajallah A; Scheu S; Brose U
    Am Nat; 2017 Jul; 190(1):131-143. PubMed ID: 28617641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive indirect effect of tadpoles on a detritivore through nutrient regeneration.
    Iwai N; Kagaya T
    Oecologia; 2007 Jul; 152(4):685-94. PubMed ID: 17351795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Eucalyptus plantations on detritus, decomposers, and detritivores in streams.
    Graça MA; Pozo J; Canhoto C; Elosegi A
    ScientificWorldJournal; 2002 Apr; 2():1173-85. PubMed ID: 12805976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking tree genetics and stream consumers: isotopic tracers elucidate controls on carbon and nitrogen assimilation.
    Compson ZG; Hungate BA; Whitham TG; Koch GW; Dijkstra P; Siders AC; Wojtowicz T; Jacobs R; Rakestraw DN; Allred KE; Sayer CK; Marks JC
    Ecology; 2018 Aug; 99(8):1759-1770. PubMed ID: 29603188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Invertebrate functional traits and terrestrial nutrient cycling: Insights from a global meta-analysis.
    McCary MA; Schmitz OJ
    J Anim Ecol; 2021 Jul; 90(7):1714-1726. PubMed ID: 33782983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing the Ecological Stoichiometry in Green and Brown Food Webs - A Review and Meta-analysis of Freshwater Food Webs.
    Evans-White MA; Halvorson HM
    Front Microbiol; 2017; 8():1184. PubMed ID: 28706509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired ecosystem process despite little effects on populations: modeling combined effects of warming and toxicants.
    Galic N; Grimm V; Forbes VE
    Glob Chang Biol; 2017 Aug; 23(8):2973-2989. PubMed ID: 27935184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interspecific homeostatic regulation and growth across aquatic invertebrate detritivores: a test of ecological stoichiometry theory.
    Halvorson HM; Fuller CL; Entrekin SA; Scott JT; Evans-White MA
    Oecologia; 2019 May; 190(1):229-242. PubMed ID: 31062165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.