These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 25738834)

  • 1. Punch card programmable microfluidics.
    Korir G; Prakash M
    PLoS One; 2015; 10(3):e0115993. PubMed ID: 25738834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovative Hydrophobic Valve Allows Complex Liquid Manipulations in a Self-Powered Channel-Based Microfluidic Device.
    Dal Dosso F; Tripodi L; Spasic D; Kokalj T; Lammertyn J
    ACS Sens; 2019 Mar; 4(3):694-703. PubMed ID: 30807106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards an active droplet-based microfluidic platform for programmable fluid handling.
    Cao X; Buryska T; Yang T; Wang J; Fischer P; Streets A; Stavrakis S; deMello A
    Lab Chip; 2023 Apr; 23(8):2029-2038. PubMed ID: 37000567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screw-actuated displacement micropumps for thermoplastic microfluidics.
    Han JY; Rahmanian OD; Kendall EL; Fleming N; DeVoe DL
    Lab Chip; 2016 Oct; 16(20):3940-3946. PubMed ID: 27713994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact Microfluidic Platform with LED Light-Actuated Valves for Enzyme-Linked Immunosorbent Assay Automation.
    Burdó-Masferrer M; Díaz-González M; Sanchis A; Calleja Á; Marco MP; Fernández-Sánchez C; Baldi A
    Biosensors (Basel); 2022 Apr; 12(5):. PubMed ID: 35624581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New flow control systems in capillarics: off valves.
    Menges J; Meffan C; Dolamore F; Fee C; Dobson R; Nock V
    Lab Chip; 2021 Jan; 21(1):205-214. PubMed ID: 33295906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconfigurable virtual electrowetting channels.
    Banerjee A; Kreit E; Liu Y; Heikenfeld J; Papautsky I
    Lab Chip; 2012 Feb; 12(4):758-64. PubMed ID: 22159496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms.
    Dak P; Ebrahimi A; Swaminathan V; Duarte-Guevara C; Bashir R; Alam MA
    Biosensors (Basel); 2016 Apr; 6(2):14. PubMed ID: 27089377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a Hand-Held and Battery-Operated Digital Microfluidic Device Using EWOD for Lab-on-a-Chip Applications.
    Grant N; Geiss B; Field S; Demann A; Chen TW
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable Knot Microfibers from Piezoelectric Microfluidics.
    Yang C; Yu Y; Wang X; Shang L; Zhao Y
    Small; 2022 Feb; 18(5):e2104309. PubMed ID: 34825481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impedance feedback control of microfluidic valves for reliable post processing combinatorial droplet injection.
    Axt B; Hsieh YF; Nalayanda D; Wang TH
    Biomed Microdevices; 2017 Sep; 19(3):61. PubMed ID: 28681238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable Gravity Self-Driven Microfluidic Chip for Point-of-Care Multiplied Immunoassays.
    Yuan H; Wan C; Wang X; Li S; Xie H; Qian C; Du W; Feng X; Li Y; Chen P; Liu BF
    Small; 2024 May; 20(21):e2310206. PubMed ID: 38085133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Compact Control System to Enable Automated Operation of Microfluidic Bioanalytical Assays.
    Gonzalez-Suarez AM; Long A; Huang X; Revzin A
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Powered Microfluidics for Point-of-Care Solutions: From Sampling to Detection of Proteins and Nucleic Acids.
    Vloemans D; Van Hileghem L; Ordutowski H; Dal Dosso F; Spasic D; Lammertyn J
    Methods Mol Biol; 2024; 2804():3-50. PubMed ID: 38753138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paper-thin multilayer microfluidic devices with integrated valves.
    Kim S; Dorlhiac G; Cotrim Chaves R; Zalavadia M; Streets A
    Lab Chip; 2021 Apr; 21(7):1287-1298. PubMed ID: 33690757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of ESKAPE Bacterial Pathogens at the Point of Care Using Isothermal DNA-Based Assays in a Portable Degas-Actuated Microfluidic Diagnostic Assay Platform.
    Renner LD; Zan J; Hu LI; Martinez M; Resto PJ; Siegel AC; Torres C; Hall SB; Slezak TR; Nguyen TH; Weibel DB
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27986722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated droplet-digital microfluidic system for on-demand droplet creation, mixing, incubation, and sorting.
    Ahmadi F; Samlali K; Vo PQN; Shih SCC
    Lab Chip; 2019 Jan; 19(3):524-535. PubMed ID: 30633267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A frugal microfluidic pump.
    Fajrial AK; Vega A; Shakya G; Ding X
    Lab Chip; 2021 Dec; 21(24):4772-4778. PubMed ID: 34751689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.