BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25739023)

  • 1. Discovery of putative small non-coding RNAs from the obligate intracellular bacterium Wolbachia pipientis.
    Woolfit M; Algama M; Keith JM; McGraw EA; Popovici J
    PLoS One; 2015; 10(3):e0118595. PubMed ID: 25739023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small RNA analysis provides new insights into cytoplasmic incompatibility in Drosophila melanogaster induced by Wolbachia.
    Zheng Y; Shen W; Bi J; Chen MY; Wang RF; Ai H; Wang YF
    J Insect Physiol; 2019 Oct; 118():103938. PubMed ID: 31491378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional test of the influence of Wolbachia genes on cytoplasmic incompatibility expression in Drosophila melanogaster.
    Yamada R; Iturbe-Ormaetxe I; Brownlie JC; O'Neill SL
    Insect Mol Biol; 2011 Feb; 20(1):75-85. PubMed ID: 20854481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No effect of Wolbachia on resistance to intracellular infection by pathogenic bacteria in Drosophila melanogaster.
    Rottschaefer SM; Lazzaro BP
    PLoS One; 2012; 7(7):e40500. PubMed ID: 22808174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle.
    Gutzwiller F; Carmo CR; Miller DE; Rice DW; Newton IL; Hawley RS; Teixeira L; Bergman CM
    G3 (Bethesda); 2015 Oct; 5(12):2843-56. PubMed ID: 26497146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wolbachia small noncoding RNAs and their role in cross-kingdom communications.
    Mayoral JG; Hussain M; Joubert DA; Iturbe-Ormaetxe I; O'Neill SL; Asgari S
    Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18721-6. PubMed ID: 25512495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and Characterization of a Candidate Wolbachia pipientis Type IV Effector That Interacts with the Actin Cytoskeleton.
    Sheehan KB; Martin M; Lesser CF; Isberg RR; Newton IL
    mBio; 2016 Jul; 7(4):. PubMed ID: 27381293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passage of Wolbachia pipientis through mutant drosophila melanogaster induces phenotypic and genomic changes.
    Newton IL; Sheehan KB
    Appl Environ Microbiol; 2015 Feb; 81(3):1032-7. PubMed ID: 25452279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host.
    Xi Z; Gavotte L; Xie Y; Dobson SL
    BMC Genomics; 2008 Jan; 9():1. PubMed ID: 18171476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Genomics of Two Closely Related Wolbachia with Different Reproductive Effects on Hosts.
    Newton IL; Clark ME; Kent BN; Bordenstein SR; Qu J; Richards S; Kelkar YD; Werren JH
    Genome Biol Evol; 2016 Jun; 8(5):1526-42. PubMed ID: 27189996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversifying selection and host adaptation in two endosymbiont genomes.
    Brownlie JC; Adamski M; Slatko B; McGraw EA
    BMC Evol Biol; 2007 Apr; 7():68. PubMed ID: 17470297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Scale Identification of Wolbachia pipientis Effectors.
    Rice DW; Sheehan KB; Newton ILG
    Genome Biol Evol; 2017 Jul; 9(7):1925-1937. PubMed ID: 28854601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wolbachia pipientis: intracellular infection and pathogenesis in Drosophila.
    McGraw EA; O'Neill SL
    Curr Opin Microbiol; 2004 Feb; 7(1):67-70. PubMed ID: 15036143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Establishment of a new continuous cell line of Drosophila melanogaster strain infected by the intracellular endosymbiotic bacterium Wolbachia pipientis under natural conditions].
    Andrianova BV; Goriacheva II; Aleksandrov ID; Gorelova TV
    Genetika; 2010 Jan; 46(1):14-7. PubMed ID: 20198874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a global Wolbachia replacement in Drosophila melanogaster.
    Riegler M; Sidhu M; Miller WJ; O'Neill SL
    Curr Biol; 2005 Aug; 15(15):1428-33. PubMed ID: 16085497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wolbachia density and virulence attenuation after transfer into a novel host.
    McGraw EA; Merritt DJ; Droller JN; O'Neill SL
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2918-23. PubMed ID: 11880639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomics reveals the presence of putative toxin-antitoxin system in Wolbachia genomes.
    Singhal K; Mohanty S
    Mol Genet Genomics; 2018 Apr; 293(2):525-540. PubMed ID: 29214346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of intracellular Wolbachia on interspecific crosses between Drosophila melanogaster and Drosophila simulans.
    Gazla IN; Carracedo MC
    Genet Mol Res; 2009 Jul; 8(3):861-9. PubMed ID: 19731208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis.
    Woolfit M; Iturbe-Ormaetxe I; McGraw EA; O'Neill SL
    Mol Biol Evol; 2009 Feb; 26(2):367-74. PubMed ID: 18988686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wolbachia Protein TomO Targets nanos mRNA and Restores Germ Stem Cells in Drosophila Sex-lethal Mutants.
    Ote M; Ueyama M; Yamamoto D
    Curr Biol; 2016 Sep; 26(17):2223-32. PubMed ID: 27498563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.