These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 25739035)

  • 41. Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution.
    Donnelly RF; Garland MJ; Morrow DI; Migalska K; Singh TR; Majithiya R; Woolfson AD
    J Control Release; 2010 Nov; 147(3):333-41. PubMed ID: 20727929
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Naltrexone salt selection for enhanced transdermal permeation through microneedle-treated skin.
    Milewski M; Pinninti RR; Stinchcomb AL
    J Pharm Sci; 2012 Aug; 101(8):2777-86. PubMed ID: 22628183
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimizing microneedle arrays to increase skin permeability for transdermal drug delivery.
    Al-Qallaf B; Das DB
    Ann N Y Acad Sci; 2009 Apr; 1161():83-94. PubMed ID: 19426308
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microneedle/nanoencapsulation-mediated transdermal delivery: mechanistic insights.
    Gomaa YA; Garland MJ; McInnes FJ; Donnelly RF; El-Khordagui LK; Wilson CG
    Eur J Pharm Biopharm; 2014 Feb; 86(2):145-55. PubMed ID: 23461860
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design, optimization, and evaluation for a long-time-released transdermal microneedle delivery system containing estradiol.
    Tang X; Qin H; Zhang X; Yang H; Yang J; Chen P; Jin Y; Yang L
    Drug Deliv Transl Res; 2024 Jun; 14(6):1551-1566. PubMed ID: 38062287
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The combination of microneedles with electroporation and sonophoresis to enhance hydrophilic macromolecule skin penetration.
    Petchsangsai M; Rojanarata T; Opanasopit P; Ngawhirunpat T
    Biol Pharm Bull; 2014; 37(8):1373-82. PubMed ID: 24931312
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimization of naltrexone diclofenac codrugs for sustained drug delivery across microneedle-treated skin.
    Ghosh P; Lee D; Kim KB; Stinchcomb AL
    Pharm Res; 2014 Jan; 31(1):148-59. PubMed ID: 23943543
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vehicle composition influence on the microneedle-enhanced transdermal flux of naltrexone hydrochloride.
    Milewski M; Stinchcomb AL
    Pharm Res; 2011 Jan; 28(1):124-34. PubMed ID: 20577787
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery.
    Yan G; Warner KS; Zhang J; Sharma S; Gale BK
    Int J Pharm; 2010 May; 391(1-2):7-12. PubMed ID: 20188808
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In Vitro Skin Retention and Drug Permeation through Intact and Microneedle Pretreated Skin after Application of Propranolol Loaded Microemulsions.
    Kelchen MN; Brogden NK
    Pharm Res; 2018 Oct; 35(12):228. PubMed ID: 30302631
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanoemulsion-based dissolving microneedle arrays for enhanced intradermal and transdermal delivery.
    Nasiri MI; Vora LK; Ershaid JA; Peng K; Tekko IA; Donnelly RF
    Drug Deliv Transl Res; 2022 Apr; 12(4):881-896. PubMed ID: 34939170
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Controlled delivery of ropinirole hydrochloride through skin using modulated iontophoresis and microneedles.
    Singh ND; Banga AK
    J Drug Target; 2013 May; 21(4):354-66. PubMed ID: 23311703
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Studies on transdermal delivery of ferulic acid through rat skin treated by microneedle arrays].
    Yang B; Du SY; Bai J; Shang KX; Lu Y; Li PY
    Zhongguo Zhong Yao Za Zhi; 2014 Dec; 39(24):4773-7. PubMed ID: 25898576
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microneedle-Mediated Delivery of Copper Peptide Through Skin.
    Li H; Low YS; Chong HP; Zin MT; Lee CY; Li B; Leolukman M; Kang L
    Pharm Res; 2015 Aug; 32(8):2678-89. PubMed ID: 25690343
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sumatriptan succinate transdermal delivery systems for the treatment of migraine.
    Balaguer-Fernández C; Femenía-Font A; Del Rio-Sancho S; Merino V; López-Castellano A
    J Pharm Sci; 2008 Jun; 97(6):2102-9. PubMed ID: 17854062
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development and evaluation of occlusive systems employing polyvinyl alcohol for transdermal delivery of sumatriptan succinate.
    Balaguer-Fernández C; Padula C; Femenía-Font A; Merino V; Santi P; López-Castellano A
    Drug Deliv; 2010 Feb; 17(2):83-91. PubMed ID: 20067437
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs.
    McCrudden MT; Alkilani AZ; McCrudden CM; McAlister E; McCarthy HO; Woolfson AD; Donnelly RF
    J Control Release; 2014 Apr; 180(100):71-80. PubMed ID: 24556420
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combination strategies for enhancing transdermal absorption of sumatriptan through skin.
    Femenía-Font A; Balaguer-Fernández C; Merino V; López-Castellano A
    Int J Pharm; 2006 Oct; 323(1-2):125-30. PubMed ID: 16809010
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of microneedles-assisted in situ depot forming poloxamer gels for sustained transdermal drug delivery.
    Khan S; Minhas MU; Tekko IA; Donnelly RF; Thakur RRS
    Drug Deliv Transl Res; 2019 Aug; 9(4):764-782. PubMed ID: 30675693
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microneedle-based drug delivery: studies on delivery parameters and biocompatibility.
    Wu Y; Qiu Y; Zhang S; Qin G; Gao Y
    Biomed Microdevices; 2008 Oct; 10(5):601-10. PubMed ID: 18324474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.