BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25739129)

  • 21. Maxillary and mandibular osteosyntheses with PLGA and P(L/DL)LA implants: a 5-year inpatient biocompatibility and degradation experience.
    Landes CA; Ballon A; Roth C
    Plast Reconstr Surg; 2006 Jun; 117(7):2347-60. PubMed ID: 16772941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Layer-by-layer assembly of chitosan and platelet monoclonal antibody to improve biocompatibility and release character of PLLA coated stent.
    Luo LL; Wang GX; Li YL; Yin TY; Jiang T; Ruan CG
    J Biomed Mater Res A; 2011 Jun; 97(4):423-32. PubMed ID: 21484986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of in vitro drug release, pH change, and molecular weight degradation of poly(L-lactic acid) and poly(D,L-lactide-co-glycolide) fibers.
    Crow BB; Borneman AF; Hawkins DL; Smith GM; Nelson KD
    Tissue Eng; 2005; 11(7-8):1077-84. PubMed ID: 16144443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards developing surface eroding poly(alpha-hydroxy acids).
    Xu XJ; Sy JC; Prasad Shastri V
    Biomaterials; 2006 May; 27(15):3021-30. PubMed ID: 16455136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biocompatibility, cell adhesion, and degradation of surface-modified biodegradable polymers designed for the upper urinary tract.
    Brauers A; Jung PK; Thissen H; Pfannschmidt O; Michaeli W; Hoecker H; Jakse G
    Tech Urol; 1998 Dec; 4(4):214-20. PubMed ID: 9892007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface patterning of a novel PEG-functionalized poly-l-lactide polymer to improve its biocompatibility: Applications to bioresorbable vascular stents.
    Pacharra S; Ortiz R; McMahon S; Wang W; Viebahn R; Salber J; Quintana I
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):624-634. PubMed ID: 30091510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New stent surface materials: the impact of polymer-dependent interactions of human endothelial cells, smooth muscle cells, and platelets.
    Busch R; Strohbach A; Rethfeldt S; Walz S; Busch M; Petersen S; Felix S; Sternberg K
    Acta Biomater; 2014 Feb; 10(2):688-700. PubMed ID: 24148751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iliac anastomotic stenting with a sirolimus-eluting biodegradable poly-L-lactide stent: a preliminary study after 6 weeks.
    Bünger CM; Grabow N; Kröger C; Lorenzen B; Hauenstein K; Goosmann M; Schmitz KP; Kreutzer HJ; Lootz D; Ince H; Nienaber CA; Klar E; Schareck W; Sternberg K
    J Endovasc Ther; 2006 Oct; 13(5):630-9. PubMed ID: 17042669
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinctive degradation behaviors of electrospun polyglycolide, poly(DL-lactide-co-glycolide), and poly(L-lactide-co-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells.
    Dong Y; Yong T; Liao S; Chan CK; Stevens MM; Ramakrishna S
    Tissue Eng Part A; 2010 Jan; 16(1):283-98. PubMed ID: 19839726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of uniform poly(d,l-lactide) and poly(d,l-lactide-co-glycolide) microspheres using a microfluidic chip for comparison.
    Yang CH; Huang KS; Grumezescu AM; Wang CY; Tzeng SC; Chen SY; Lin YH; Lin YS
    Electrophoresis; 2014 Feb; 35(2-3):316-22. PubMed ID: 23857679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) with varying compositions.
    Liu SQ; Tong YW; Yang YY
    Biomaterials; 2005 Aug; 26(24):5064-74. PubMed ID: 15769542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation, characterization and in vivo pharmacodynamic evaluation of thymopentin loaded poly(lactide acid)/poly(lactide-co-glycolide acid) implants.
    Wei G; Jin L; Xu L; Liu Y; Lu W
    Int J Pharm; 2010 Oct; 398(1-2):123-9. PubMed ID: 20674730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel bioresorbable stent coating for drug release in congenital heart disease applications.
    Goodfriend AC; Welch TR; Barker G; Ginther R; Riegel MS; Reddy SV; Wang J; Nugent A; Forbess J
    J Biomed Mater Res A; 2015 May; 103(5):1761-70. PubMed ID: 25196819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Encrustation and strength retention properties of the self-expandable, biodegradable, self-reinforced L-lactide-glycolic acid co-polymer 80:20 spiral urethral stent in vitro.
    Laaksovirta S; Välimaa T; Isotalo T; Törmälä P; Talja M; Tammela TL
    J Urol; 2003 Aug; 170(2 Pt 1):468-71. PubMed ID: 12853801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface fluorination of polylactide as a path to improve platelet associated hemocompatibility.
    Khalifehzadeh R; Ciridon W; Ratner BD
    Acta Biomater; 2018 Sep; 78():23-35. PubMed ID: 30036719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the use of a biodegradable ureteral stent after retrograde endopyelotomy in a porcine model.
    Olweny EO; Landman J; Andreoni C; Collyer W; Kerbl K; Onciu M; Välimaa T; Clayman RV
    J Urol; 2002 May; 167(5):2198-202. PubMed ID: 11956478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CaSiO₃ microstructure modulating the in vitro and in vivo bioactivity of poly(lactide-co-glycolide) microspheres.
    Wu C; Zhang Y; Fan W; Ke X; Hu X; Zhou Y; Xiao Y
    J Biomed Mater Res A; 2011 Jul; 98(1):122-31. PubMed ID: 21548064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced endothelialization of a new stent polymer through surface enhancement and incorporation of growth factor-delivering microparticles.
    Xu H; Nguyen KT; Brilakis ES; Yang J; Fuh E; Banerjee S
    J Cardiovasc Transl Res; 2012 Aug; 5(4):519-27. PubMed ID: 22639344
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of three-dimensionally printed vascular stents of bioresorbable poly(l-lactide-co-caprolactone).
    Zhao J; Song G; Zhao Q; Feng H; Wang Y; Anderson JM; Zhao H; Liu Q
    J Biomed Mater Res B Appl Biomater; 2023 Mar; 111(3):656-664. PubMed ID: 36420745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of the long-term patency of a transmural heparinized polycaprolactone and poly(D,L-lactic/glycolic acid) scaffold.
    Zhao J; Cheng Z; Quan X; Zhao Z; Lü F; Liu X
    J Surg Res; 2014 Apr; 187(2):394-402. PubMed ID: 24280687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.