BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 25739210)

  • 1. [Raman spectroscopy combined with pattern recognition methods for rapid identification of crude soybean oil adulteration].
    Li BN; Wu YW; Wang Y; Zu WC; Chen SC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2696-700. PubMed ID: 25739210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research on detection method of adulterated olive oil by Raman spectroscopy and least squares support vector machine].
    Zhang YQ; Dong W; Zhang B; Wang XP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jun; 32(6):1554-8. PubMed ID: 22870638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Qualitative-Quantitative Analysis of Rice Bran Oil Adulteration Based on Laser Near Infrared Spectroscopy].
    Tu B; Song ZQ; Zheng X; Zeng LL; Yin C; He DP; Qi PS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1539-45. PubMed ID: 26601363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reflectance Spectroscopy with Multivariate Methods for Non-Destructive Discrimination of Edible Oil Adulteration.
    Su N; Weng S; Wang L; Xu T
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Raman spectroscopy in the rapid detection of waste cooking oil.
    Jin H; Li H; Yin Z; Zhu Y; Lu A; Zhao D; Li C
    Food Chem; 2021 Nov; 362():130191. PubMed ID: 34082292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of ATR-FTIR spectroscopy coupled with chemometrics for the authentication of avocado oil in ternary mixtures with sunflower and soybean oils.
    Jiménez-Sotelo P; Hernández-Martínez M; Osorio-Revilla G; Meza-Márquez OG; García-Ochoa F; Gallardo-Velázquez T
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Jul; 33(7):1105-15. PubMed ID: 27314226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of machine-learning and Raman spectroscopy for the rapid detection of edible oils type and adulteration.
    Zhao H; Zhan Y; Xu Z; John Nduwamungu J; Zhou Y; Powers R; Xu C
    Food Chem; 2022 Mar; 373(Pt B):131471. PubMed ID: 34749090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Authentication and adulteration analysis of sesame oil by FTIR spectroscopy].
    Ding QZ; Liu LL; Wu YW; Li BN; Ouyang J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2690-5. PubMed ID: 25739209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Discrimination of Edible Oil Type, Oxidation, and Adulteration by Liquid Interfacial Surface-Enhanced Raman Spectroscopy.
    Du S; Su M; Jiang Y; Yu F; Xu Y; Lou X; Yu T; Liu H
    ACS Sens; 2019 Jul; 4(7):1798-1805. PubMed ID: 31251024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and nondestructive fraud detection of palm oil adulteration with Sudan dyes using portable NIR spectroscopic techniques.
    Teye E; Elliott C; Sam-Amoah LK; Mingle C
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 Nov; 36(11):1589-1596. PubMed ID: 31535956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Identification of Pummelo Cultivars Based on Hyperspectral Imaging Technology].
    Li XL; Yi SL; He SL; Lü Q; Xie RJ; Zheng YQ; Deng L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2639-43. PubMed ID: 26669182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid authentication of olive oil adulteration by Raman spectrometry.
    Zou MQ; Zhang XF; Qi XH; Ma HL; Dong Y; Liu CW; Guo X; Wang H
    J Agric Food Chem; 2009 Jul; 57(14):6001-6. PubMed ID: 19537730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application of Raman Spectroscopy and Pattern Recognition Methods for Determining the Authenticity and Detecting the Adulteration of Milk Powder].
    Wang HY; Song C; Liu J; Zhang ZY; Xie WL; Li LP; Sha M
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):124-8. PubMed ID: 30195279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of adulteration in Chinese honey using NIR and ATR-FTIR spectral data fusion.
    Huang F; Song H; Guo L; Guang P; Yang X; Li L; Zhao H; Yang M
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jul; 235():118297. PubMed ID: 32248033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of colonic tissues using near-infrared Raman spectroscopy and support vector machines.
    Widjaja E; Zheng W; Huang Z
    Int J Oncol; 2008 Mar; 32(3):653-62. PubMed ID: 18292943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A classification and identification model of extra virgin olive oil adulterated with other edible oils based on pigment compositions and support vector machine.
    Lu CH; Li BQ; Jing Q; Pei D; Huang XY
    Food Chem; 2023 Sep; 420():136161. PubMed ID: 37080110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Model Optimization of Ternary System Adulteration Detection in Camellia Oil Based on Visible/Near Infrared Spectroscopy].
    Mo XX; Zhou Y; Sun T; Wu YQ; Liu MH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec; 36(12):3881-4. PubMed ID: 30235404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion mobility spectrometry fingerprints: A rapid detection technology for adulteration of sesame oil.
    Zhang L; Shuai Q; Li P; Zhang Q; Ma F; Zhang W; Ding X
    Food Chem; 2016 Feb; 192():60-6. PubMed ID: 26304320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Discriminating and quantifying potential adulteration in virgin olive oil by near infrared spectroscopy with BP-ANN and PLS].
    Weng XX; Lu F; Wang CX; Qi YP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3283-7. PubMed ID: 20210151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Discrimination of Varieties of Cabbage with Near Infrared Spectra Based on Principal Component Analysis and Successive Projections Algorithm].
    Luo W; Du YZ; Zhang HL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3536-41. PubMed ID: 30198665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.