These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 25739224)
1. [Study on detection methods of interstitial fluid glucose concentration based on infrared attenuated total reflection]. Sun CY; Cao YZ; Yu SL; Yu HX; Xu KX; Li DC Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2775-8. PubMed ID: 25739224 [TBL] [Abstract][Full Text] [Related]
2. Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement. Pleitez M; von Lilienfeld-Toal H; Mäntele W Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jan; 85(1):61-5. PubMed ID: 22000639 [TBL] [Abstract][Full Text] [Related]
3. Impact of tissue heterogeneity on noninvasive near-infrared glucose measurements in interstitial fluid of rat skin. Alexeeva NV; Arnold MA J Diabetes Sci Technol; 2010 Sep; 4(5):1041-54. PubMed ID: 20920424 [TBL] [Abstract][Full Text] [Related]
4. Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for a non-invasive monitoring of glucose in the interstitial fluid. Pleitez MA; Lieblein T; Bauer A; Hertzberg O; von Lilienfeld-Toal H; Mäntele W Rev Sci Instrum; 2013 Aug; 84(8):084901. PubMed ID: 24007090 [TBL] [Abstract][Full Text] [Related]
5. Infrared reflectometry of skin: Analysis of backscattered light from different skin layers. Pleitez MA; Hertzberg O; Bauer A; Lieblein T; Glasmacher M; Tholl H; Mäntele W Spectrochim Acta A Mol Biomol Spectrosc; 2017 Sep; 184():220-227. PubMed ID: 28500960 [TBL] [Abstract][Full Text] [Related]
6. Penetration monitoring of drugs and additives by ATR-FTIR spectroscopy/tape stripping and confocal Raman spectroscopy - A comparative study. Binder L; Kulovits EM; Petz R; Ruthofer J; Baurecht D; Klang V; Valenta C Eur J Pharm Biopharm; 2018 Sep; 130():214-223. PubMed ID: 29981829 [TBL] [Abstract][Full Text] [Related]
7. [In-Vivo Noninvasive Measurement of Human Blood Glucose Levels by Mid-Infrared Spectrograph with External CO(2) Laser Source]. Zhang QQ; Fan YL; He XQ; Sun YM Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):85-8. PubMed ID: 30192485 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of a newly developed mid-infrared sensor for real-time monitoring of yeast fermentations. Schalk R; Geoerg D; Staubach J; Raedle M; Methner FJ; Beuermann T J Biosci Bioeng; 2017 May; 123(5):651-657. PubMed ID: 28057468 [TBL] [Abstract][Full Text] [Related]
10. [Study on specificity of noninvasive glucose measurements based on two-dimensional correlation mid-infrared spectroscopy]. Zhang W; Cao YZ; Liu R; Xu KX Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jun; 32(6):1507-11. PubMed ID: 22870629 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Opportunities and Limitations of Mid-Infrared Skin Spectroscopy for Noninvasive Blood Glucose Monitoring. Delbeck S; Heise HM J Diabetes Sci Technol; 2021 Jan; 15(1):19-27. PubMed ID: 32590911 [TBL] [Abstract][Full Text] [Related]
12. Progress and Perspectives of Mid-Infrared Photoacoustic Spectroscopy for Non-Invasive Glucose Detection. Kaysir MR; Song J; Rassel S; Aloraynan A; Ban D Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504114 [TBL] [Abstract][Full Text] [Related]
13. Depth-selective photothermal IR spectroscopy of skin: potential application for non-invasive glucose measurement. Hertzberg O; Bauer A; Küderle A; Pleitez MA; Mäntele W Analyst; 2017 Jan; 142(3):495-502. PubMed ID: 28098265 [TBL] [Abstract][Full Text] [Related]
14. In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy. Pleitez MA; Lieblein T; Bauer A; Hertzberg O; von Lilienfeld-Toal H; Mäntele W Anal Chem; 2013 Jan; 85(2):1013-20. PubMed ID: 23214424 [TBL] [Abstract][Full Text] [Related]
15. Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Wang PM; Cornwell M; Prausnitz MR Diabetes Technol Ther; 2005 Feb; 7(1):131-41. PubMed ID: 15738711 [TBL] [Abstract][Full Text] [Related]
16. Glucose-sensitive membrane and infrared absorption spectroscopy for potential use as an implantable glucose sensor. Robinson RJ; McDonald SD ASAIO J; 1992; 38(3):M458-62. PubMed ID: 1457902 [TBL] [Abstract][Full Text] [Related]
17. Optimization of mid-infrared noninvasive blood-glucose prediction model by support vector regression coupled with different spectral features. Song L; Han Z; Lau WM Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov; 321():124738. PubMed ID: 38945006 [TBL] [Abstract][Full Text] [Related]
18. IR-spectroscopy of skin in vivo: Optimal skin sites and properties for non-invasive glucose measurement by photoacoustic and photothermal spectroscopy. Bauer A; Hertzberg O; Küderle A; Strobel D; Pleitez MA; Mäntele W J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28417584 [TBL] [Abstract][Full Text] [Related]
19. Blood glucose measurement by multiple attenuated total reflection and infrared absorption spectroscopy. Mendelson Y; Clermont AC; Peura RA; Lin BC IEEE Trans Biomed Eng; 1990 May; 37(5):458-65. PubMed ID: 2345001 [TBL] [Abstract][Full Text] [Related]