BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25739458)

  • 1. Wash functions downstream of Rho1 GTPase in a subset of Drosophila immune cell developmental migrations.
    Verboon JM; Rahe TK; Rodriguez-Mesa E; Parkhurst SM
    Mol Biol Cell; 2015 May; 26(9):1665-74. PubMed ID: 25739458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wash functions downstream of Rho and links linear and branched actin nucleation factors.
    Liu R; Abreu-Blanco MT; Barry KC; Linardopoulou EV; Osborn GE; Parkhurst SM
    Development; 2009 Aug; 136(16):2849-60. PubMed ID: 19633175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drosophila WASH is required for integrin-mediated cell adhesion, cell motility and lysosomal neutralization.
    Nagel BM; Bechtold M; Rodriguez LG; Bogdan S
    J Cell Sci; 2017 Jan; 130(2):344-359. PubMed ID: 27884932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function of Rho GTPases in embryonic blood cell migration in Drosophila.
    Paladi M; Tepass U
    J Cell Sci; 2004 Dec; 117(Pt 26):6313-26. PubMed ID: 15561773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in Drosophila melanogaster.
    Wood W; Faria C; Jacinto A
    J Cell Biol; 2006 May; 173(3):405-16. PubMed ID: 16651377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reciprocal regulation of Rac1 and Rho1 in Drosophila circulating immune surveillance cells.
    Williams MJ; Habayeb MS; Hultmark D
    J Cell Sci; 2007 Feb; 120(Pt 3):502-11. PubMed ID: 17227793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wash interacts with lamin and affects global nuclear organization.
    Verboon JM; Rincon-Arano H; Werwie TR; Delrow JJ; Scalzo D; Nandakumar V; Groudine M; Parkhurst SM
    Curr Biol; 2015 Mar; 25(6):804-810. PubMed ID: 25754639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved role for autophagy in Rho1-mediated cortical remodeling and blood cell recruitment.
    Kadandale P; Stender JD; Glass CK; Kiger AA
    Proc Natl Acad Sci U S A; 2010 Jun; 107(23):10502-7. PubMed ID: 20498061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drosophila melanogaster embryonic haemocytes: masters of multitasking.
    Wood W; Jacinto A
    Nat Rev Mol Cell Biol; 2007 Jul; 8(7):542-51. PubMed ID: 17565363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rho GTPase function in flies: insights from a developmental and organismal perspective.
    Johndrow JE; Magie CR; Parkhurst SM
    Biochem Cell Biol; 2004 Dec; 82(6):643-57. PubMed ID: 15674432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinated control of lumen size and collective migration in the salivary gland.
    Xu N; Myat MM
    Fly (Austin); 2012; 6(3):142-6. PubMed ID: 22688086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of rho GTPase family homologues in Drosophila melanogaster: overexpressing Rho1 in retinal cells causes a late developmental defect.
    Hariharan IK; Hu KQ; Asha H; Quintanilla A; Ezzell RM; Settleman J
    EMBO J; 1995 Jan; 14(2):292-302. PubMed ID: 7835340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rho-family small GTPases are required for cell polarization and directional sensing in Drosophila wound healing.
    Baek SH; Kwon YC; Lee H; Choe KM
    Biochem Biophys Res Commun; 2010 Apr; 394(3):488-92. PubMed ID: 20184864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination of Rho family GTPase activities to orchestrate cytoskeleton responses during cell wound repair.
    Abreu-Blanco MT; Verboon JM; Parkhurst SM
    Curr Biol; 2014 Jan; 24(2):144-155. PubMed ID: 24388847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of cytoskeletal regulatory proteins required for efficient phagocytosis in Drosophila.
    Pearson AM; Baksa K; Rämet M; Protas M; McKee M; Brown D; Ezekowitz RA
    Microbes Infect; 2003 Aug; 5(10):815-24. PubMed ID: 12919849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human subtelomeric WASH genes encode a new subclass of the WASP family.
    Linardopoulou EV; Parghi SS; Friedman C; Osborn GE; Parkhurst SM; Trask BJ
    PLoS Genet; 2007 Dec; 3(12):e237. PubMed ID: 18159949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rac1 signalling in the Drosophila larval cellular immune response.
    Williams MJ; Wiklund ML; Wikman S; Hultmark D
    J Cell Sci; 2006 May; 119(Pt 10):2015-24. PubMed ID: 16621891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wash exhibits context-dependent phenotypes and, along with the WASH regulatory complex, regulates
    Verboon JM; Decker JR; Nakamura M; Parkhurst SM
    J Cell Sci; 2018 Apr; 131(8):. PubMed ID: 29549166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wiskott-Aldrich syndrome proteins in the nucleus: aWASH with possibilities.
    Verboon JM; Sugumar B; Parkhurst SM
    Nucleus; 2015; 6(5):349-59. PubMed ID: 26305109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vitro method for studying subcellular rearrangements during cell polarization in Drosophila melanogaster hemocytes.
    Edwards SS; Delgado MG; Nader GPF; Piel M; Bellaïche Y; Lennon-Duménil AM; Glavic Á
    Mech Dev; 2018 Dec; 154():277-286. PubMed ID: 30096416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.