BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25739560)

  • 41. Ouricuri (Syagrus coronata) fiber: a novel biosorbent to remove methylene blue from aqueous solutions.
    Meili L; da Silva TS; Henrique DC; Soletti JI; de Carvalho SH; Fonseca EJ; de Almeida AR; Dotto GL
    Water Sci Technol; 2017 Jan; 75(1-2):106-114. PubMed ID: 28067651
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biosorption of 2,4-dichlorophenol by immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solutions.
    Wu J; Yu HQ
    Bioresour Technol; 2007 Jan; 98(2):253-9. PubMed ID: 16517157
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon.
    Ozer A; Dursun G
    J Hazard Mater; 2007 Jul; 146(1-2):262-9. PubMed ID: 17204366
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies.
    Senthilkumaar S; Varadarajan PR; Porkodi K; Subbhuraam CV
    J Colloid Interface Sci; 2005 Apr; 284(1):78-82. PubMed ID: 15752787
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydrogen sulfide alleviates 2,4-dichlorophenol toxicity and promotes its degradation in Phanerochaete chrysosporium.
    Chen A; Zeng G; Chen G; Zhang C; Yan M; Shang C; Hu X; Lu L; Chen M; Guo Z; Zuo Y
    Chemosphere; 2014 Aug; 109():208-12. PubMed ID: 24530160
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Camellia oleifera Abel shells as a new biosorbent to remove methylene blue from aqueous solutions.
    Lu Y; Lin L; You R; Wu Z
    Water Sci Technol; 2011; 64(7):1566-71. PubMed ID: 22179657
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioremediation of pulp and paper mill effluent with Phanerochaete chrysosporium.
    Singhal V; Kumar A; Rai JP
    J Environ Biol; 2005 Jul; 26(3):525-9. PubMed ID: 16334292
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column.
    Han R; Wang Y; Yu W; Zou W; Shi J; Liu H
    J Hazard Mater; 2007 Mar; 141(3):713-8. PubMed ID: 16938390
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adsorption of methylene blue from aqueous solution by graphene.
    Liu T; Li Y; Du Q; Sun J; Jiao Y; Yang G; Wang Z; Xia Y; Zhang W; Wang K; Zhu H; Wu D
    Colloids Surf B Biointerfaces; 2012 Feb; 90():197-203. PubMed ID: 22036471
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Decolorization and detoxification of different azo dyes by Phanerochaete chrysosporium ME-446 under submerged fermentation.
    de Almeida AP; Macrae A; Ribeiro BD; do Nascimento RP
    Braz J Microbiol; 2021 Jun; 52(2):727-738. PubMed ID: 33694059
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of Ni (II) ions from aqueous solutions using modified rice straw in a fixed bed column.
    Sharma R; Singh B
    Bioresour Technol; 2013 Oct; 146():519-524. PubMed ID: 23973969
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced decolourization of Direct Red-80 dye by the white rot fungus Phanerochaete chrysosporium employing sequential design of experiments.
    Singh S; Pakshirajan K; Daverey A
    Biodegradation; 2010 Jul; 21(4):501-11. PubMed ID: 19960234
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue.
    Nasuha N; Hameed BH; Din AT
    J Hazard Mater; 2010 Mar; 175(1-3):126-32. PubMed ID: 19879046
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use of non-living lyophilized Phanerochaete chrysosporium cultivated in various media for phenol removal.
    Pernyeszi T; Farkas V; Felinger A; Boros B; Dékány I
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8550-8562. PubMed ID: 29313200
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adsorption of anionic dyes in aqueous solution using chemically modified barley straw.
    Ibrahim S; Fatimah I; Ang HM; Wang S
    Water Sci Technol; 2010; 62(5):1177-82. PubMed ID: 20818062
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biodegradation of a polymeric dye in a pulsed bed bioreactor by immobilised phanerochaete chrysosporium.
    Mielgo I; Moreira MT; Feijoo G; Lema JM
    Water Res; 2002 Apr; 36(7):1896-901. PubMed ID: 12044089
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modelling and experimental checking of the influence of substrate concentration on the first order kinetic constant in photo-processes.
    Gómez M; Murcia MD; Gómez E; Ortega S; Sánchez A; Thaikovskaya O; Briantceva N
    J Environ Manage; 2016 Dec; 183(Pt 3):818-825. PubMed ID: 27658658
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contribution characteristics of the in situ extracellular polymeric substances (EPS) in Phanerochaete chrysosporium to Pb immobilization.
    Li N; Zhang X; Wang D; Cheng Y; Wu L; Fu L
    Bioprocess Biosyst Eng; 2017 Oct; 40(10):1447-1452. PubMed ID: 28647825
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater.
    Wang S; Zhu ZH; Coomes A; Haghseresht F; Lu GQ
    J Colloid Interface Sci; 2005 Apr; 284(2):440-6. PubMed ID: 15780280
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of methylene blue from aqueous solution by chaff in batch mode.
    Han R; Wang Y; Han P; Shi J; Yang J; Lu Y
    J Hazard Mater; 2006 Sep; 137(1):550-7. PubMed ID: 16600482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.