These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 25739722)
1. Computational modeling of the N-terminus of the human dopamine transporter and its interaction with PIP2 -containing membranes. Khelashvili G; Doktorova M; Sahai MA; Johner N; Shi L; Weinstein H Proteins; 2015 May; 83(5):952-69. PubMed ID: 25739722 [TBL] [Abstract][Full Text] [Related]
2. Spontaneous inward opening of the dopamine transporter is triggered by PIP2-regulated dynamics of the N-terminus. Khelashvili G; Stanley N; Sahai MA; Medina J; LeVine MV; Shi L; De Fabritiis G; Weinstein H ACS Chem Neurosci; 2015 Nov; 6(11):1825-37. PubMed ID: 26255829 [TBL] [Abstract][Full Text] [Related]
3. Functional mechanisms of neurotransmitter transporters regulated by lipid-protein interactions of their terminal loops. Khelashvili G; Weinstein H Biochim Biophys Acta; 2015 Sep; 1848(9):1765-74. PubMed ID: 25847498 [TBL] [Abstract][Full Text] [Related]
4. A Markov State-based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter. Razavi AM; Khelashvili G; Weinstein H Sci Rep; 2017 Jan; 7():40076. PubMed ID: 28059145 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics study of a gelsolin-derived peptide binding to a lipid bilayer containing phosphatidylinositol 4,5-bisphosphate. Liepiņa I; Czaplewski C; Janmey P; Liwo A Biopolymers; 2003; 71(1):49-70. PubMed ID: 12712500 [TBL] [Abstract][Full Text] [Related]
6. The importance of membrane defects-lessons from simulations. Bennett WF; Tieleman DP Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900 [TBL] [Abstract][Full Text] [Related]
7. Interactions of the EGFR juxtamembrane domain with PIP2-containing lipid bilayers: Insights from multiscale molecular dynamics simulations. Abd Halim KB; Koldsø H; Sansom MSP Biochim Biophys Acta; 2015 May; 1850(5):1017-1025. PubMed ID: 25219456 [TBL] [Abstract][Full Text] [Related]
8. How structural elements evolving from bacterial to human SLC6 transporters enabled new functional properties. Razavi AM; Khelashvili G; Weinstein H BMC Biol; 2018 Mar; 16(1):31. PubMed ID: 29540172 [TBL] [Abstract][Full Text] [Related]
9. PIP2 regulates psychostimulant behaviors through its interaction with a membrane protein. Hamilton PJ; Belovich AN; Khelashvili G; Saunders C; Erreger K; Javitch JA; Sitte HH; Weinstein H; Matthies HJG; Galli A Nat Chem Biol; 2014 Jul; 10(7):582-589. PubMed ID: 24880859 [TBL] [Abstract][Full Text] [Related]
10. Dopamine transporter comparative molecular modeling and binding site prediction using the LeuT(Aa) leucine transporter as a template. Indarte M; Madura JD; Surratt CK Proteins; 2008 Feb; 70(3):1033-46. PubMed ID: 17847094 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics of leucine and dopamine transporter proteins in a model cell membrane lipid bilayer. Gedeon PC; Indarte M; Surratt CK; Madura JD Proteins; 2010 Mar; 78(4):797-811. PubMed ID: 19899168 [TBL] [Abstract][Full Text] [Related]
12. A Coarse Grained Model for a Lipid Membrane with Physiological Composition and Leaflet Asymmetry. Sharma S; Kim BN; Stansfeld PJ; Sansom MS; Lindau M PLoS One; 2015; 10(12):e0144814. PubMed ID: 26659855 [TBL] [Abstract][Full Text] [Related]
13. A juxtamembrane mutation in the N terminus of the dopamine transporter induces preference for an inward-facing conformation. Guptaroy B; Zhang M; Bowton E; Binda F; Shi L; Weinstein H; Galli A; Javitch JA; Neubig RR; Gnegy ME Mol Pharmacol; 2009 Mar; 75(3):514-24. PubMed ID: 19098122 [TBL] [Abstract][Full Text] [Related]
14. Structural Determinants of the Dopamine Transporter Regulation Mediated by G Proteins. Rojas G; Orellana I; Rosales-Rojas R; García-Olivares J; Comer J; Vergara-Jaque A J Chem Inf Model; 2020 Jul; 60(7):3577-3586. PubMed ID: 32525311 [TBL] [Abstract][Full Text] [Related]
15. Conformational dynamics of a neurotransmitter:sodium symporter in a lipid bilayer. Adhikary S; Deredge DJ; Nagarajan A; Forrest LR; Wintrode PL; Singh SK Proc Natl Acad Sci U S A; 2017 Mar; 114(10):E1786-E1795. PubMed ID: 28223522 [TBL] [Abstract][Full Text] [Related]
17. Insights into membrane translocation of the cell-penetrating peptide pVEC from molecular dynamics calculations. Alaybeyoglu B; Sariyar Akbulut B; Ozkirimli E J Biomol Struct Dyn; 2016 Nov; 34(11):2387-98. PubMed ID: 26569019 [TBL] [Abstract][Full Text] [Related]
18. Molecular Basis of the Membrane Interaction of the β2e Subunit of Voltage-Gated Ca(2+) Channels. Kim DI; Kang M; Kim S; Lee J; Park Y; Chang I; Suh BC Biophys J; 2015 Sep; 109(5):922-35. PubMed ID: 26331250 [TBL] [Abstract][Full Text] [Related]
19. Role of charged lipids in membrane structures - Insight given by simulations. Pöyry S; Vattulainen I Biochim Biophys Acta; 2016 Oct; 1858(10):2322-2333. PubMed ID: 27003126 [TBL] [Abstract][Full Text] [Related]
20. Structural determinants for the membrane insertion of the transmembrane peptide of hemagglutinin from influenza virus. Victor BL; Baptista AM; Soares CM J Chem Inf Model; 2012 Nov; 52(11):3001-12. PubMed ID: 23101989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]