These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 25739732)

  • 1. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties.
    Jiao Y; Han D; Ding Y; Zhang X; Guo G; Hu J; Yang D; Dong A
    Nat Commun; 2015 Mar; 6():6420. PubMed ID: 25739732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon-coated nanoparticle superlattices for energy applications.
    Li J; Yiliguma ; Wang Y; Zheng G
    Nanoscale; 2016 Aug; 8(30):14359-68. PubMed ID: 27432112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly ordered mesoporous few-layer graphene frameworks enabled by fe3 o4 nanocrystal superlattices.
    Jiao Y; Han D; Liu L; Ji L; Guo G; Hu J; Yang D; Dong A
    Angew Chem Int Ed Engl; 2015 May; 54(19):5727-31. PubMed ID: 25826716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties.
    Hao F; Zhang Z; Yin L
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8337-44. PubMed ID: 23924311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Phase Behavior of Nanoparticle Superlattices in the Presence of a Solvent.
    Missoni LL; Tagliazucchi M
    ACS Nano; 2020 May; 14(5):5649-5658. PubMed ID: 32286787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dipole-dipole interactions in nanoparticle superlattices.
    Talapin DV; Shevchenko EV; Murray CB; Titov AV; Kral P
    Nano Lett; 2007 May; 7(5):1213-9. PubMed ID: 17397231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling structure and porosity in catalytic nanoparticle superlattices with DNA.
    Auyeung E; Morris W; Mondloch JE; Hupp JT; Farha OK; Mirkin CA
    J Am Chem Soc; 2015 Feb; 137(4):1658-62. PubMed ID: 25611764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled growth and shape-directed self-assembly of gold nanoarrows.
    Wang Q; Wang Z; Li Z; Xiao J; Shan H; Fang Z; Qi L
    Sci Adv; 2017 Oct; 3(10):e1701183. PubMed ID: 29098180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layer-by-layer assembled MoO₂-graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries.
    Xia F; Hu X; Sun Y; Luo W; Huang Y
    Nanoscale; 2012 Aug; 4(15):4707-11. PubMed ID: 22744734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a C14 Frank-Kasper Phase in One-Size Gold Nanoparticle Superlattices.
    Hajiw S; Pansu B; Sadoc JF
    ACS Nano; 2015 Aug; 9(8):8116-21. PubMed ID: 26230645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.
    Lim SH; Lee T; Oh Y; Narayanan T; Sung BJ; Choi SM
    Nat Commun; 2017 Aug; 8(1):360. PubMed ID: 28842555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries.
    Liu J; Kopold P; van Aken PA; Maier J; Yu Y
    Angew Chem Int Ed Engl; 2015 Aug; 54(33):9632-6. PubMed ID: 26119499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic mediator-induced structural transformation in superlattices of monolayer-protected gold nanoparticles.
    Yao H; Kuriyama A; Minami T; Kimura K
    J Colloid Interface Sci; 2011 Feb; 354(1):55-60. PubMed ID: 21074166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-dependent multiple twinning in nanocrystal superlattices.
    Rupich SM; Shevchenko EV; Bodnarchuk MI; Lee B; Talapin DV
    J Am Chem Soc; 2010 Jan; 132(1):289-96. PubMed ID: 19968283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MOF-derived self-assembled ZnO/Co3O4 nanocomposite clusters as high-performance anodes for lithium-ion batteries.
    Zhu D; Zheng F; Xu S; Zhang Y; Chen Q
    Dalton Trans; 2015 Oct; 44(38):16946-52. PubMed ID: 26369618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle Superlattices: The Roles of Soft Ligands.
    Si KJ; Chen Y; Shi Q; Cheng W
    Adv Sci (Weinh); 2018 Jan; 5(1):1700179. PubMed ID: 29375958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices.
    Udayabhaskararao T; Altantzis T; Houben L; Coronado-Puchau M; Langer J; Popovitz-Biro R; Liz-Marzán LM; Vuković L; Král P; Bals S; Klajn R
    Science; 2017 Oct; 358(6362):514-518. PubMed ID: 29074773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the Formation and Structure of Nanoparticle Superlattices through Surface Ligand Behavior.
    Cordeiro MA; Leite ER; Stach EA
    Langmuir; 2016 Nov; 32(44):11606-11614. PubMed ID: 27673391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.