These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25739838)

  • 1. Folate receptor-targeted and cathepsin B-activatable nanoprobe for in situ therapeutic monitoring of photosensitive cell death.
    Tian J; Ding L; Wang Q; Hu Y; Jia L; Yu JS; Ju H
    Anal Chem; 2015 Apr; 87(7):3841-8. PubMed ID: 25739838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA-Responsive Cancer Cell Imaging and Therapy with Functionalized Gold Nanoprobe.
    Liu J; Zhang L; Lei J; Ju H
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19016-23. PubMed ID: 26271820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smart dual-functional warhead for folate receptor-specific activatable imaging and photodynamic therapy.
    Kim J; Tung CH; Choi Y
    Chem Commun (Camb); 2014 Sep; 50(73):10600-3. PubMed ID: 25089302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibronectin-Targeting and Cathepsin B-Activatable Theranostic Nanoprobe for MR/Fluorescence Imaging and Enhanced Photodynamic Therapy for Triple Negative Breast Cancer.
    Wang Y; Jiang L; Zhang Y; Lu Y; Li J; Wang H; Yao D; Wang D
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33564-33574. PubMed ID: 32633941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activatable Photodynamic Therapy with Therapeutic Effect Prediction Based on a Self-correction Upconversion Nanoprobe.
    Li Y; Zhang X; Zhang Y; Zhang Y; He Y; Liu Y; Ju H
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19313-19323. PubMed ID: 32275130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishing folate-receptor-positive cells from folate-receptor-negative cells using a fluorescence off-on nanoprobe.
    Feng D; Song Y; Shi W; Li X; Ma H
    Anal Chem; 2013 Jul; 85(13):6530-5. PubMed ID: 23751075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy.
    Jin CS; Cui L; Wang F; Chen J; Zheng G
    Adv Healthc Mater; 2014 Aug; 3(8):1240-9. PubMed ID: 24464930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An artemisinin-mediated ROS evolving and dual protease light-up nanocapsule for real-time imaging of lysosomal tumor cell death.
    Huang L; Luo Y; Sun X; Ju H; Tian J; Yu BY
    Biosens Bioelectron; 2017 Jun; 92():724-732. PubMed ID: 27825878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scavenger receptor-recognized and enzyme-responsive nanoprobe for fluorescent labeling of lysosomes in live cells.
    Fan Y; Li F; Chen D
    Biomaterials; 2014 Sep; 35(27):7870-80. PubMed ID: 24929616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multifunctional nanomicelle for real-time targeted imaging and precise near-infrared cancer therapy.
    Tian J; Ding L; Ju H; Yang Y; Li X; Shen Z; Zhu Z; Yu JS; Yang CJ
    Angew Chem Int Ed Engl; 2014 Sep; 53(36):9544-9. PubMed ID: 25045069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A porphyrin photosensitized metal-organic framework for cancer cell apoptosis and caspase responsive theranostics.
    Zhang L; Lei J; Ma F; Ling P; Liu J; Ju H
    Chem Commun (Camb); 2015 Jul; 51(54):10831-4. PubMed ID: 26051476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-dependent and cathepsin B activable CaCO
    Sun N; Wang D; Yao G; Li X; Mei T; Zhou X; Wong KY; Jiang B; Fang Z
    Int J Nanomedicine; 2019; 14():4309-4317. PubMed ID: 31354262
    [No Abstract]   [Full Text] [Related]  

  • 13. H
    Ma Y; Li X; Li A; Yang P; Zhang C; Tang B
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13752-13756. PubMed ID: 28856780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The folate receptor as a rational therapeutic target for personalized cancer treatment.
    Assaraf YG; Leamon CP; Reddy JA
    Drug Resist Updat; 2014; 17(4-6):89-95. PubMed ID: 25457975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysosome-associated miniSOG as a photosensitizer for mammalian cells.
    Ryumina AP; Serebrovskaya EO; Staroverov DB; Zlobovskaya OA; Shcheglov AS; Lukyanov SA; Lukyanov KA
    Biotechniques; 2016; 61(2):92-4. PubMed ID: 27528074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodynamic therapy using a protease-mediated theranostic agent reduces cathepsin-B activity in mouse atheromata in vivo.
    Shon SM; Choi Y; Kim JY; Lee DK; Park JY; Schellingerhout D; Kim DE
    Arterioscler Thromb Vasc Biol; 2013 Jun; 33(6):1360-5. PubMed ID: 23539220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer.
    Tian J; Ding L; Xu HJ; Shen Z; Ju H; Jia L; Bao L; Yu JS
    J Am Chem Soc; 2013 Dec; 135(50):18850-8. PubMed ID: 24294991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endolysosomal environment-responsive photodynamic nanocarrier to enhance cytosolic drug delivery via photosensitizer-mediated membrane disruption.
    Lee CS; Park W; Park SJ; Na K
    Biomaterials; 2013 Dec; 34(36):9227-36. PubMed ID: 24008035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy.
    Bae BC; Na K
    Biomaterials; 2010 Aug; 31(24):6325-35. PubMed ID: 20493523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folate-targeted gadolinium-lipid-based nanoparticles as a bimodal contrast agent for tumor fluorescent and magnetic resonance imaging.
    Nakamura T; Kawano K; Shiraishi K; Yokoyama M; Maitani Y
    Biol Pharm Bull; 2014; 37(4):521-7. PubMed ID: 24694600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.