BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25739855)

  • 1. Microtubules dual chemo and thermo-responsive depolymerization.
    Li Z; Alisaraie L
    Proteins; 2015 May; 83(5):970-81. PubMed ID: 25739855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vinblastine perturbation of tubulin protofilament structure: a computational insight.
    Rendine S; Pieraccini S; Sironi M
    Phys Chem Chem Phys; 2010 Dec; 12(47):15530-6. PubMed ID: 20978652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical insight into the structural mechanism for the binding of vinblastine with tubulin.
    Chi S; Xie W; Zhang J; Xu S
    J Biomol Struct Dyn; 2015; 33(10):2234-54. PubMed ID: 25588192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Unique Binding Mode of Laulimalide to Two Tubulin Protofilaments.
    Churchill CD; Klobukowski M; Tuszynski JA
    Chem Biol Drug Des; 2015 Aug; 86(2):190-9. PubMed ID: 25376845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the mechanism of action of the clinically approved taxanes: a comprehensive comparison of local and allosteric effects.
    Churchill CD; Klobukowski M; Tuszynski JA
    Chem Biol Drug Des; 2015 Nov; 86(5):1253-66. PubMed ID: 26032329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diverse balances of tubulin interactions and shape change drive and interrupt microtubule depolymerization.
    Bollinger JA; Stevens MJ
    Soft Matter; 2019 Oct; 15(40):8137-8146. PubMed ID: 31593193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulation and free energy landscape methods in probing L215H, L217R and L225M βI-tubulin mutations causing paclitaxel resistance in cancer cells.
    Tripathi S; Srivastava G; Sharma A
    Biochem Biophys Res Commun; 2016 Aug; 476(4):273-279. PubMed ID: 27233604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into microtubule destabilization mechanism of 3,4,5-trimethoxyphenyl indanone derivatives using molecular dynamics simulation and conformational modes analysis.
    Tripathi S; Srivastava G; Singh A; Prakasham AP; Negi AS; Sharma A
    J Comput Aided Mol Des; 2018 Apr; 32(4):559-572. PubMed ID: 29516382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics modeling of tubulin C-terminal tail interactions with the microtubule surface.
    Freedman H; Luchko T; Luduena RF; Tuszynski JA
    Proteins; 2011 Oct; 79(10):2968-82. PubMed ID: 21905119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating docking and molecular dynamics approaches for a series of proline-based 2,5-diketopiperazines as novel αβ-tubulin inhibitors.
    Fani N; Bordbar AK; Ghayeb Y; Sepehri S
    J Biomol Struct Dyn; 2015; 33(10):2285-95. PubMed ID: 25616934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insight into the role of Gln293Met mutation on the Peloruside A/Laulimalide association with αβ-tubulin from molecular dynamics simulations, binding free energy calculations and weak interactions analysis.
    Zúñiga MA; Alderete JB; Jaña GA; Jiménez VA
    J Comput Aided Mol Des; 2017 Jul; 31(7):643-652. PubMed ID: 28597356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro polymerization of microtubules with a fullerene derivative.
    Ratnikova TA; Govindan PN; Salonen E; Ke PC
    ACS Nano; 2011 Aug; 5(8):6306-14. PubMed ID: 21761844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic instability of microtubules: effect of catastrophe-suppressing drugs.
    Mishra PK; Kunwar A; Mukherji S; Chowdhury D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051914. PubMed ID: 16383652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delineating the interaction of combretastatin A-4 with αβ tubulin isotypes present in drug resistant human lung carcinoma using a molecular modeling approach.
    Kumbhar BV; Bhandare VV; Panda D; Kunwar A
    J Biomol Struct Dyn; 2020 Feb; 38(2):426-438. PubMed ID: 30831055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide-dependent lateral and longitudinal interactions in microtubules.
    Grafmüller A; Noya EG; Voth GA
    J Mol Biol; 2013 Jun; 425(12):2232-46. PubMed ID: 23541590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrapotent vinblastines in which added molecular complexity further disrupts the target tubulin dimer-dimer interface.
    Carney DW; Lukesh JC; Brody DM; Brütsch MM; Boger DL
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9691-8. PubMed ID: 27512044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The free energy profile of tubulin straight-bent conformational changes, with implications for microtubule assembly and drug discovery.
    Peng LX; Hsu MT; Bonomi M; Agard DA; Jacobson MP
    PLoS Comput Biol; 2014 Feb; 10(2):e1003464. PubMed ID: 24516374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of noscapine's localization and interaction with the tubulin-α/β heterodimer.
    Alisaraie L; Tuszynski JA
    Chem Biol Drug Des; 2011 Oct; 78(4):535-46. PubMed ID: 21781284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational design of Tryprostatin-A derivatives as novel αβ-tubulin inhibitors.
    Fani N; Bordbar AK; Ghayeb Y; Sepehri S
    J Biomol Struct Dyn; 2015; 33(3):471-86. PubMed ID: 24606044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for the regulation of tubulin by vinblastine.
    Gigant B; Wang C; Ravelli RB; Roussi F; Steinmetz MO; Curmi PA; Sobel A; Knossow M
    Nature; 2005 May; 435(7041):519-22. PubMed ID: 15917812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.