These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25739900)

  • 21. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta).
    Olischläger M; Wiencke C
    J Exp Bot; 2013 Dec; 64(18):5587-97. PubMed ID: 24127518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms.
    Clement R; Jensen E; Prioretti L; Maberly SC; Gontero B
    J Exp Bot; 2017 Jun; 68(14):3925-3935. PubMed ID: 28369472
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming.
    Bergstrom E; Ordoñez A; Ho M; Hurd C; Fry B; Diaz-Pulido G
    Mar Environ Res; 2020 Oct; 161():105107. PubMed ID: 32890983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photosynthetic Responses of Turf-forming Red Macroalgae to High CO
    McCoy SJ; Santillán-Sarmiento A; Brown MT; Widdicombe S; Wheeler GL
    J Phycol; 2020 Feb; 56(1):85-96. PubMed ID: 31553063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution.
    Giordano M; Beardall J; Raven JA
    Annu Rev Plant Biol; 2005; 56():99-131. PubMed ID: 15862091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change.
    Raven JA; Giordano M; Beardall J; Maberly SC
    Photosynth Res; 2011 Sep; 109(1-3):281-96. PubMed ID: 21327536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased temperature and CO2 alleviate photoinhibition in Desmarestia anceps: from transcriptomics to carbon utilization.
    Iñiguez C; Heinrich S; Harms L; Gordillo FJL
    J Exp Bot; 2017 Jun; 68(14):3971-3984. PubMed ID: 28575516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteomic and Mutant Analysis of the CO
    Mangiapia M; ; Brown TW; Chaput D; Haller E; Harmer TL; Hashemy Z; Keeley R; Leonard J; Mancera P; Nicholson D; Stevens S; Wanjugi P; Zabinski T; Pan C; Scott KM
    J Bacteriol; 2017 Apr; 199(7):. PubMed ID: 28115547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters.
    Spalding MH
    J Exp Bot; 2008; 59(7):1463-73. PubMed ID: 17597098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification.
    Ow YX; Uthicke S; Collier CJ
    PLoS One; 2016; 11(3):e0150352. PubMed ID: 26938454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses.
    Yamano T; Fukuzawa H
    J Basic Microbiol; 2009 Feb; 49(1):42-51. PubMed ID: 19253331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.
    Young JN; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3751-3762. PubMed ID: 28645158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon acquisition characteristics of six microalgal species isolated from a subtropical reservoir: potential implications for species succession.
    Lines T; Beardall J
    J Phycol; 2018 Oct; 54(5):599-607. PubMed ID: 30055070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2 : how Chlamydomonas works against the gradient.
    Wang Y; Stessman DJ; Spalding MH
    Plant J; 2015 May; 82(3):429-448. PubMed ID: 25765072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms.
    Kranz SA; Young JN; Hopkinson BM; Goldman JA; Tortell PD; Morel FM
    New Phytol; 2015 Jan; 205(1):192-201. PubMed ID: 25308897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Seasonality affects macroalgal community response to increases in pCO2.
    Baggini C; Salomidi M; Voutsinas E; Bray L; Krasakopoulou E; Hall-Spencer JM
    PLoS One; 2014; 9(9):e106520. PubMed ID: 25184242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. IMPACT OF TAXONOMY, GEOGRAPHY, AND DEPTH ON δ(13) C AND δ(15) N VARIATION IN A LARGE COLLECTION OF MACROALGAE(1).
    Marconi M; Giordano M; Raven JA
    J Phycol; 2011 Oct; 47(5):1023-35. PubMed ID: 27020183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell size influences inorganic carbon acquisition in artificially selected phytoplankton.
    Malerba ME; Marshall DJ; Palacios MM; Raven JA; Beardall J
    New Phytol; 2021 Mar; 229(5):2647-2659. PubMed ID: 33156533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecophysiology matters: linking inorganic carbon acquisition to ecological preference in four species of microalgae (Chlorophyceae).
    Lachmann SC; Maberly SC; Spijkerman E
    J Phycol; 2016 Dec; 52(6):1051-1063. PubMed ID: 27624741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The ins and outs of CO2.
    Raven JA; Beardall J
    J Exp Bot; 2016 Jan; 67(1):1-13. PubMed ID: 26466660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.