These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25739999)

  • 1. Prediction of sugar yields during hydrolysis of lignocellulosic biomass using artificial neural network modeling.
    Vani S; Sukumaran RK; Savithri S
    Bioresour Technol; 2015; 188():128-35. PubMed ID: 25739999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Customized optimization of cellulase mixtures for differently pretreated rice straw.
    Kim IJ; Jung JY; Lee HJ; Park HS; Jung YH; Park K; Kim KH
    Bioprocess Biosyst Eng; 2015 May; 38(5):929-37. PubMed ID: 25547288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production.
    Sindhu R; Kuttiraja M; Binod P; Janu KU; Sukumaran RK; Pandey A
    Bioresour Technol; 2011 Dec; 102(23):10915-21. PubMed ID: 22000965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process evaluation of enzymatic hydrolysis with filtrate recycle for the production of high concentration sugars.
    Xue Y; Rusli J; Chang HM; Phillips R; Jameel H
    Appl Biochem Biotechnol; 2012 Feb; 166(4):839-55. PubMed ID: 22167689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass.
    Nguyen TY; Cai CM; Kumar R; Wyman CE
    ChemSusChem; 2015 May; 8(10):1716-25. PubMed ID: 25677100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of particle size and initial solid loading on thermochemical pretreatment of wheat straw for improving sugar recovery.
    Rojas-Rejón OA; Sánchez A
    Bioprocess Biosyst Eng; 2014 Jul; 37(7):1427-36. PubMed ID: 24390576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ozonolysis: An advantageous pretreatment for lignocellulosic biomass revisited.
    Travaini R; Martín-Juárez J; Lorenzo-Hernando A; Bolado-Rodríguez S
    Bioresour Technol; 2016 Jan; 199():2-12. PubMed ID: 26409859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of ethanol production from microfluidized wheat straw by response surface methodology.
    Turhan O; Isci A; Mert B; Sakiyan O; Donmez S
    Prep Biochem Biotechnol; 2015; 45(8):785-95. PubMed ID: 25181638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-pressure homogenization pretreatment of four different lignocellulosic biomass for enhancing enzymatic digestibility.
    Jin S; Zhang G; Zhang P; Fan S; Li F
    Bioresour Technol; 2015 Apr; 181():270-4. PubMed ID: 25661305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High solids enzymatic hydrolysis of pretreated lignocellulosic materials with a powerful stirrer concept.
    Ludwig D; Michael B; Hirth T; Rupp S; Zibek S
    Appl Biochem Biotechnol; 2014 Feb; 172(3):1699-713. PubMed ID: 24242162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of cellulases by solid state fermentation with Aspergillus terreus and enzymatic hydrolysis of mild alkali-treated rice straw.
    Narra M; Dixit G; Divecha J; Madamwar D; Shah AR
    Bioresour Technol; 2012 Oct; 121():355-61. PubMed ID: 22864171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 Model: inhibition pattern, degree of inhibition, validity of simplified HCH-1 Model.
    O'Dwyer JP; Zhu L; Granda CB; Holtzapple MT
    Bioresour Technol; 2007 Nov; 98(16):2969-77. PubMed ID: 17140790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolysis of acid and alkali presoaked lignocellulosic biomass exposed to electron beam irradiation.
    Karthika K; Arun AB; Melo JS; Mittal KC; Kumar M; Rekha PD
    Bioresour Technol; 2013 Feb; 129():646-9. PubMed ID: 23298772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural network prediction of biomass digestibility based on structural features.
    O'Dwyer JP; Zhu L; Granda CB; Chang VS; Holtzapple MT
    Biotechnol Prog; 2008; 24(2):283-92. PubMed ID: 18220407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates.
    Song HT; Gao Y; Yang YM; Xiao WJ; Liu SH; Xia WC; Liu ZL; Yi L; Jiang ZB
    Bioresour Technol; 2016 Nov; 219():710-715. PubMed ID: 27560367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fed-Batch Enzymatic Saccharification of High Solids Pretreated Lignocellulose for Obtaining High Titers and High Yields of Glucose.
    Jung YH; Park HM; Kim DH; Yang J; Kim KH
    Appl Biochem Biotechnol; 2017 Jul; 182(3):1108-1120. PubMed ID: 28078651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation.
    Karthika K; Arun AB; Rekha PD
    Carbohydr Polym; 2012 Oct; 90(2):1038-45. PubMed ID: 22840037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining the role of particle size on ammonia-based bioprocessing of maize stover.
    Athmanathan A; Trupia S
    Biotechnol Prog; 2016; 32(1):134-40. PubMed ID: 26587736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pressing lignocellulosic biomass on sugar yield in two-stage dilute-acid hydrolysis process.
    Kim KH; Tucker MP; Nguyen QA
    Biotechnol Prog; 2002; 18(3):489-94. PubMed ID: 12052064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolysis of biomass using a reusable solid carbon acid catalyst and fermentation of the catalytic hydrolysate to ethanol.
    Goswami M; Meena S; Navatha S; Prasanna Rani KN; Pandey A; Sukumaran RK; Prasad RB; Prabhavathi Devi BL
    Bioresour Technol; 2015; 188():99-102. PubMed ID: 25777067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.