These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 25740170)

  • 1. QuickFF: A program for a quick and easy derivation of force fields for metal-organic frameworks from ab initio input.
    Vanduyfhuys L; Vandenbrande S; Verstraelen T; Schmid R; Waroquier M; Van Speybroeck V
    J Comput Chem; 2015 May; 36(13):1015-27. PubMed ID: 25740170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extension of the QuickFF force field protocol for an improved accuracy of structural, vibrational, mechanical and thermal properties of metal-organic frameworks.
    Vanduyfhuys L; Vandenbrande S; Wieme J; Waroquier M; Verstraelen T; Van Speybroeck V
    J Comput Chem; 2018 Jun; 39(16):999-1011. PubMed ID: 29396847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic first principles parameterization of force fields for metal-organic frameworks using a genetic algorithm approach.
    Tafipolsky M; Schmid R
    J Phys Chem B; 2009 Feb; 113(5):1341-52. PubMed ID: 19133795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial hessian fitting for determining force constant parameters in molecular mechanics.
    Wang R; Ozhgibesov M; Hirao H
    J Comput Chem; 2016 Oct; 37(26):2349-59. PubMed ID: 27497261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Derivation of class II force fields. VIII. Derivation of a general quantum mechanical force field for organic compounds.
    Ewig CS; Berry R; Dinur U; Hill JR; Hwang MJ; Li H; Liang C; Maple J; Peng Z; Stockfisch TP; Thacher TS; Yan L; Ni X; Hagler AT
    J Comput Chem; 2001 Nov; 22(15):1782-1800. PubMed ID: 12116411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio parametrized MM3 force field for the metal-organic framework MOF-5.
    Tafipolsky M; Amirjalayer S; Schmid R
    J Comput Chem; 2007 May; 28(7):1169-76. PubMed ID: 17301955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab Initio Parametrized Force Field for the Flexible Metal-Organic Framework MIL-53(Al).
    Vanduyfhuys L; Verstraelen T; Vandichel M; Waroquier M; Van Speybroeck V
    J Chem Theory Comput; 2012 Sep; 8(9):3217-31. PubMed ID: 26605731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transferable next-generation force fields from simple liquids to complex materials.
    Schmidt JR; Yu K; McDaniel JG
    Acc Chem Res; 2015 Mar; 48(3):548-56. PubMed ID: 25688596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT-Derived Force Fields for Modeling Hydrocarbon Adsorption in MIL-47(V).
    Kulkarni AR; Sholl DS
    Langmuir; 2015 Aug; 31(30):8453-68. PubMed ID: 26158777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab Initio Flexible Force Field for Metal-Organic Frameworks Using Dummy Model Coordination Bonds.
    Jawahery S; Rampal N; Moosavi SM; Witman M; Smit B
    J Chem Theory Comput; 2019 Jun; 15(6):3666-3677. PubMed ID: 31082258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio carbon capture in open-site metal-organic frameworks.
    Dzubak AL; Lin LC; Kim J; Swisher JA; Poloni R; Maximoff SN; Smit B; Gagliardi L
    Nat Chem; 2012 Oct; 4(10):810-6. PubMed ID: 23000994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of complex classical force fields through force matching to ab initio data: application to a room-temperature ionic liquid.
    Youngs TG; Del Pópolo MG; Kohanoff J
    J Phys Chem B; 2006 Mar; 110(11):5697-707. PubMed ID: 16539515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing ab initio quality force fields from condensed phase quantum-mechanics/molecular-mechanics calculations through the adaptive force matching method.
    Akin-Ojo O; Song Y; Wang F
    J Chem Phys; 2008 Aug; 129(6):064108. PubMed ID: 18715052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paramfit: automated optimization of force field parameters for molecular dynamics simulations.
    Betz RM; Walker RC
    J Comput Chem; 2015 Jan; 36(2):79-87. PubMed ID: 25413259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force-Field Development from Electronic Structure Calculations with Periodic Boundary Conditions: Applications to Gaseous Adsorption and Transport in Metal-Organic Frameworks.
    Lin LC; Lee K; Gagliardi L; Neaton JB; Smit B
    J Chem Theory Comput; 2014 Apr; 10(4):1477-88. PubMed ID: 26580364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Derivation of class II force fields. VI. Carbohydrate compounds and anomeric effects.
    Hwang MJ; Ni X; Waldman M; Ewig CS; Hagler AT
    Biopolymers; 1998 May; 45(6):435-68. PubMed ID: 9538697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On flexible force fields for metal-organic frameworks: Recent developments and future prospects.
    Heinen J; Dubbeldam D
    Wiley Interdiscip Rev Comput Mol Sci; 2018; 8(4):e1363. PubMed ID: 30008812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible Force Field Parameterization through Fitting on the Ab Initio-Derived Elastic Tensor.
    Heinen J; Burtch NC; Walton KS; Dubbeldam D
    J Chem Theory Comput; 2017 Aug; 13(8):3722-3730. PubMed ID: 28661672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.
    Chaudret R; Gresh N; Narth C; Lagardère L; Darden TA; Cisneros GA; Piquemal JP
    J Phys Chem A; 2014 Sep; 118(35):7598-612. PubMed ID: 24878003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.