These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 25740310)

  • 1. Measurement of surface hardness of primary carious lesions in extracted human enamel -measurement of Knoop hardness using Cariotester.
    Shimizu A; Yamamoto T; Nakashima S; Nikaido T; Sugawara T; Momoi Y
    Dent Mater J; 2015; 34(2):252-6. PubMed ID: 25740310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Newly developed hardness testing system, "Cariotester": measurement principles and development of a program for measuring Knoop hardness of carious dentin.
    Shimizu A; Nakashima S; Nikaido T; Sugawara T; Yamamoto T; Momoi Y
    Dent Mater J; 2013; 32(4):643-7. PubMed ID: 23903648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microhardness as a predictor of sound and carious dentine removal using alumina air abrasion.
    Paolinelis G; Watson TF; Banerjee A
    Caries Res; 2006; 40(4):292-5. PubMed ID: 16741359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microhardness of carious deciduous dentin.
    Hosoya Y; Marshall SJ; Watanabe LG; Marshall GW
    Oper Dent; 2000; 25(2):81-9. PubMed ID: 11203804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity of a portable microhardness testing system (Cariotester) for diagnosis of progression in active caries lesions.
    Iwami Y; Yamamoto H; Hayashi M
    Dent Mater J; 2013; 32(4):667-72. PubMed ID: 23903652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Knoop and Vickers surface microhardness and transverse microradiography for the study of early caries lesion formation in human and bovine enamel.
    Lippert F; Lynch RJ
    Arch Oral Biol; 2014 Jul; 59(7):704-10. PubMed ID: 24798979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-indentation characterisation of natural carious white spot lesions.
    Huang TT; He LH; Darendeliler MA; Swain MV
    Caries Res; 2010; 44(2):101-7. PubMed ID: 20173325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evaluation of secondary caries development in enamel and root dentin around luted metallic restoration.
    Shinkai RS; Cury AA; Cury JA
    Oper Dent; 2001; 26(1):52-9. PubMed ID: 11203778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of hydroxyapatite density and Knoop hardness in sound human enamel and a correlational analysis between them.
    He B; Huang S; Jing J; Hao Y
    Arch Oral Biol; 2010 Feb; 55(2):134-41. PubMed ID: 20064635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Morphological study of enamel and dentin teeth with carious process and non-carious lesions].
    Tkachenko IM; Brailko NN; Kovalenko VV; Nazarenko ZJ; Sheshukova OV
    Wiad Lek; 2018; 71(5):1002-1005. PubMed ID: 30176630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between nanohardness and mineral content of artificial carious enamel lesions.
    Buchalla W; Imfeld T; Attin T; Swain MV; Schmidlin PR
    Caries Res; 2008; 42(3):157-63. PubMed ID: 18446023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dentinal composition and Knoop hardness measurements of cavity floor following carious dentin removal with Carisolv.
    Hossain M; Nakamura Y; Tamaki Y; Yamada Y; Jayawardena JA; Matsumoto K
    Oper Dent; 2003; 28(4):346-51. PubMed ID: 12877418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiodensity and hardness of enamel and dentin of human and bovine teeth, varying bovine teeth age.
    Fonseca RB; Haiter-Neto F; Carlo HL; Soares CJ; Sinhoreti MA; Puppin-Rontani RM; Correr-Sobrinho L
    Arch Oral Biol; 2008 Nov; 53(11):1023-9. PubMed ID: 18675389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reliability and accuracy of two methods for proximal caries detection and depth on directly visible proximal surfaces: an in vitro study.
    Ekstrand KR; Luna LE; Promisiero L; Cortes A; Cuevas S; Reyes JF; Torres CE; Martignon S
    Caries Res; 2011; 45(2):93-9. PubMed ID: 21412000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A confocal micro-endoscopic investigation of the relationship between the microhardness of carious dentine and its autofluorescence.
    Banerjee A; Cook R; Kellow S; Shah K; Festy F; Sherriff M; Watson T
    Eur J Oral Sci; 2010 Feb; 118(1):75-9. PubMed ID: 20156268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of polymerization characteristics and penetration into enamel caries lesions of experimental infiltrants.
    Araújo GS; Sfalcin RA; Araújo TG; Alonso RC; Puppin-Rontani RM
    J Dent; 2013 Nov; 41(11):1014-9. PubMed ID: 24004967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and structural evaluation of dentin caries-like lesions produced by different artificial models.
    Pacheco LF; Banzi É; Rodrigues E; Soares LE; Pascon FM; Correr-Sobrinho L; Puppin-Rontani RM
    Braz Dent J; 2013; 24(6):610-8. PubMed ID: 24474358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microhardness of dentine in primary teeth after topical fluoride applications.
    Chu CH; Lo EC
    J Dent; 2008 Jun; 36(6):387-91. PubMed ID: 18378377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro effects of nano-hydroxyapatite paste on initial enamel carious lesions.
    de Carvalho FG; Vieira BR; Santos RL; Carlo HL; Lopes PQ; de Lima BA
    Pediatr Dent; 2014; 36(3):85-9. PubMed ID: 24960376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of an actuator-driven pulsed water jet for removal of softened carious dentin.
    Yokoyama-Sato Y; Nishioka T; Naganuma Y; Takahashi M; Nakagawa A; Yoda N; Sasaki K; Takahashi N; Tominaga T; Iikubo M
    Dent Mater J; 2022 Jul; 41(4):527-533. PubMed ID: 35264543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.