These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
46 related articles for article (PubMed ID: 25740439)
1. Localization of BEN1-LIKE protein and nuclear degradation during development of metaphloem sieve elements in Triticum aestivum L. Cai J; Zhang Z; Zhou Z; Yang W; Liu Y; Mei F; Zhou G; Wang L Acta Biol Hung; 2015 Mar; 66(1):66-79. PubMed ID: 25740439 [TBL] [Abstract][Full Text] [Related]
2. Evidence of ceased programmed cell death in metaphloem sieve elements in the developing caryopsis of Triticum aestivum L. Wang L; Zhou Z; Song X; Li J; Deng X; Mei F Protoplasma; 2008 Dec; 234(1-4):87-96. PubMed ID: 18985425 [TBL] [Abstract][Full Text] [Related]
3. Study on programmed cell death and dynamic changes of starch accumulation in pericarp cells of Triticum aestivum L. Zhou Z; Wang L; Li J; Song X; Yang C Protoplasma; 2009 Jul; 236(1-4):49-58. PubMed ID: 19455280 [TBL] [Abstract][Full Text] [Related]
4. Location of caspase 3-like protease in the development of sieve element and tracheary element of stem in Cucurbita moschata. Hao X; Qian J; Xu S; Song X; Zhu J J Integr Plant Biol; 2008 Dec; 50(12):1499-507. PubMed ID: 19093968 [TBL] [Abstract][Full Text] [Related]
5. [Localization of fibrillarin, 53 kDa protein and Ag-NOR proteins in the nuclei of giant antipodal cells of the wheat Triticum aestivum]. Lazareva EM; Chentsov IuS Tsitologiia; 2004; 46(2):125-35. PubMed ID: 15174351 [TBL] [Abstract][Full Text] [Related]
6. Microautophagy involves programmed cell semi-death of sieve elements in developing caryopsis of Triticum aestivum L. Yang W; Cai J; Zhou Z; Zhou G; Mei F; Wang L Cell Biol Int; 2015 Dec; 39(12):1364-75. PubMed ID: 26146941 [TBL] [Abstract][Full Text] [Related]
7. Differentiation of abnormal sieve elements in roots of wheat (Triticum aestivum L.) affected by colchicine. Eleftheriou EP New Phytol; 1993 Dec; 125(4):813-827. PubMed ID: 33874460 [TBL] [Abstract][Full Text] [Related]
8. Integrated analysis of seed proteome and mRNA oxidation reveals distinct post-transcriptional features regulating dormancy in wheat (Triticum aestivum L.). Gao F; Rampitsch C; Chitnis VR; Humphreys GD; Jordan MC; Ayele BT Plant Biotechnol J; 2013 Oct; 11(8):921-32. PubMed ID: 23745731 [TBL] [Abstract][Full Text] [Related]
9. Zn Liang M; Bai M; Wu H Cells; 2021 Nov; 10(11):. PubMed ID: 34831444 [TBL] [Abstract][Full Text] [Related]
10. Identification of a MYB3R gene involved in drought, salt and cold stress in wheat (Triticum aestivum L.). Cai H; Tian S; Liu C; Dong H Gene; 2011 Oct; 485(2):146-52. PubMed ID: 21763408 [TBL] [Abstract][Full Text] [Related]
11. BEN1 and ZEN1 cDNAs encoding S1-type DNases that are associated with programmed cell death in plants. Aoyagi S; Sugiyama M; Fukuda H FEBS Lett; 1998 Jun; 429(2):134-8. PubMed ID: 9650576 [TBL] [Abstract][Full Text] [Related]
12. RNA silencing of Waxy gene results in low levels of amylose in the seeds of transgenic wheat (Triticum aestivum L.). Li JR; Zhao W; Li QZ; Ye XG; An BY; Li X; Zhang XS Yi Chuan Xue Bao; 2005 Aug; 32(8):846-54. PubMed ID: 16231740 [TBL] [Abstract][Full Text] [Related]
13. High temperature during grain fill alters the morphology of protein and starch deposits in the starchy endosperm cells of developing wheat (Triticum aestivum L.) grain. Hurkman WJ; Wood DF J Agric Food Chem; 2011 May; 59(9):4938-46. PubMed ID: 21417450 [TBL] [Abstract][Full Text] [Related]
14. Differential expression of three BOR1 genes corresponding to different genomes in response to boron conditions in hexaploid wheat (Triticum aestivum L.). Leaungthitikanchana S; Fujibe T; Tanaka M; Wang S; Sotta N; Takano J; Fujiwara T Plant Cell Physiol; 2013 Jul; 54(7):1056-63. PubMed ID: 23596187 [TBL] [Abstract][Full Text] [Related]
15. Molecular cloning and functional analysis of a novel 6&1-FEH from wheat (Triticum aestivum L.) preferentially degrading small graminans like bifurcose. Kawakami A; Yoshida M; Van den Ende W Gene; 2005 Sep; 358():93-101. PubMed ID: 16051449 [TBL] [Abstract][Full Text] [Related]
16. Comparative phosphoproteome analysis of the developing grains in bread wheat (Triticum aestivum L.) under well-watered and water-deficit conditions. Zhang M; Ma CY; Lv DW; Zhen SM; Li XH; Yan YM J Proteome Res; 2014 Oct; 13(10):4281-97. PubMed ID: 25145454 [TBL] [Abstract][Full Text] [Related]
17. [Comparative study of the protein content of cell nuclei from the germs and seedlings of wheat]. Vasil'eva NA; Belkina GG; Tongur AM; Davtian Zh Biokhimiia; 1969; 34(6):1239-44. PubMed ID: 5374199 [No Abstract] [Full Text] [Related]
18. Integrative study on proteomics, molecular physiology, and genetics reveals an accumulation of cyclophilin-like protein, TaCYP20-2, leading to an increase of Rht protein and dwarf in a novel GA-insensitive mutant (gaid) in Wheat. Li B; Xu W; Xu Y; Zhang Y; Wang T; Bai Y; Han C; Zhang A; Xu Z; Chong K J Proteome Res; 2010 Aug; 9(8):4242-53. PubMed ID: 20527814 [TBL] [Abstract][Full Text] [Related]
19. A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat. Shan L; Li C; Chen F; Zhao S; Xia G Plant Cell Environ; 2008 Aug; 31(8):1128-37. PubMed ID: 18433440 [TBL] [Abstract][Full Text] [Related]
20. The role of phloem sieve elements and laticifers in the biosynthesis and accumulation of alkaloids in opium poppy. Samanani N; Alcantara J; Bourgault R; Zulak KG; Facchini PJ Plant J; 2006 Aug; 47(4):547-63. PubMed ID: 16813579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]