These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 25740619)

  • 1. Cellulose structure and lignin distribution in normal and compression wood of the Maidenhair tree (Ginkgo biloba L.).
    Andersson S; Wang Y; Pönni R; Hänninen T; Mononen M; Ren H; Serimaa R; Saranpää P
    J Integr Plant Biol; 2015 Apr; 57(4):388-95. PubMed ID: 25740619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of anatomy and composition distribution between normal and compression wood of Pinus bungeana Zucc. revealed by microscopic imaging techniques.
    Zhang Z; Ma J; Ji Z; Xu F
    Microsc Microanal; 2012 Dec; 18(6):1459-66. PubMed ID: 23237521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation of cellulose microfibril angles in softwoods and hardwoods-a possible strategy of mechanical optimization.
    Lichtenegger H; Reiterer A; Stanzl-Tschegg SE; Fratzl P
    J Struct Biol; 1999 Dec; 128(3):257-69. PubMed ID: 10633065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana).
    Agarwal UP
    Planta; 2006 Oct; 224(5):1141-53. PubMed ID: 16761135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of microfibril angle in molecular deformation of cellulose fibrils in Pinus massoniana compression wood and opposite wood studied by in-situ WAXS.
    Guo F; Wang J; Liu W; Hu J; Chen Y; Zhang X; Yang R; Yu Y
    Carbohydr Polym; 2024 Jun; 334():122024. PubMed ID: 38553223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous distribution of xylan and lignin in tension wood G-layers of the S1+G type in several Japanese hardwoods.
    Higaki A; Yoshinaga A; Takabe K
    Tree Physiol; 2017 Dec; 37(12):1767-1775. PubMed ID: 29177443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of cell wall polysaccharides in normal and compression wood of radiata pine: relationships with lignification and microfibril orientation.
    Donaldson LA; Knox JP
    Plant Physiol; 2012 Feb; 158(2):642-53. PubMed ID: 22147521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Branch architecture in Ginkgo biloba: wood anatomy and long shoot-short shoot interactions.
    Little SA; Jacobs B; McKechnie SJ; Cooper RL; Christianson ML; Jernstedt JA
    Am J Bot; 2013 Oct; 100(10):1923-35. PubMed ID: 24061214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy.
    Peng H; Salmén L; Stevanic JS; Lu J
    Planta; 2019 Jul; 250(1):163-171. PubMed ID: 30953149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stem-righting mechanism in gymnosperm trees deduced from limitations in compression wood development.
    Yamashita S; Yoshida M; Takayama S; Okuyama T
    Ann Bot; 2007 Mar; 99(3):487-93. PubMed ID: 17218339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of the hygroelastic behaviour of normal and compression wood tracheids.
    Joffre T; Neagu RC; Bardage SL; Gamstedt EK
    J Struct Biol; 2014 Jan; 185(1):89-98. PubMed ID: 24184469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical responses to modified lignin composition in tension wood of hybrid poplar (Populus tremula x Populus alba).
    Al-Haddad JM; Kang KY; Mansfield SD; Telewski FW
    Tree Physiol; 2013 Apr; 33(4):365-73. PubMed ID: 23515474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging.
    Gierlinger N; Luss S; König C; Konnerth J; Eder M; Fratzl P
    J Exp Bot; 2010; 61(2):587-95. PubMed ID: 20007198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose microfibril angle in the cell wall of wood fibres.
    Barnett JR; Bonham VA
    Biol Rev Camb Philos Soc; 2004 May; 79(2):461-72. PubMed ID: 15191232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The anatomy of the chi-chi of Ginkgo biloba suggests a mode of elongation growth that is an alternative to growth driven by an apical meristem.
    Barlow PW; Kurczyńska EU
    J Plant Res; 2007 Mar; 120(2):269-80. PubMed ID: 17171395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of lignin and its coniferyl alcohol and coniferyl aldehyde groups in Picea abies and Pinus sylvestris as observed by Raman imaging.
    Hänninen T; Kontturi E; Vuorinen T
    Phytochemistry; 2011 Oct; 72(14-15):1889-95. PubMed ID: 21632083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research on systematic evolution of ginkgo biloba based on chemical composition of wood].
    Gong QL; Hu AH; Xing SY; Wang F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1512-6. PubMed ID: 19810520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression in Eucalyptus branch wood with marked variation in cellulose microfibril orientation and lacking G-layers.
    Qiu D; Wilson IW; Gan S; Washusen R; Moran GF; Southerton SG
    New Phytol; 2008; 179(1):94-103. PubMed ID: 18422902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on near-infrared absorption mechanism of alkali lignin].
    Wu XS; Xie YM; Liu HB; Wu H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jun; 26(6):1031-3. PubMed ID: 16961223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of fungal-degraded lime wood by X-ray diffraction and cross-polarization magic-angle-spinning 13C-nuclear magnetic resonance spectroscopy.
    Popescu CM; Larsson PT; Tibirna CM; Vasile C
    Appl Spectrosc; 2010 Sep; 64(9):1054-60. PubMed ID: 20828443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.