These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 25740701)

  • 21. Computer-aided detection (CAD) of solid pulmonary nodules in chest x-ray equivalent ultralow dose chest CT - first in-vivo results at dose levels of 0.13mSv.
    Messerli M; Kluckert T; Knitel M; Rengier F; Warschkow R; Alkadhi H; Leschka S; Wildermuth S; Bauer RW
    Eur J Radiol; 2016 Dec; 85(12):2217-2224. PubMed ID: 27842670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of computer-aided detection (CADe) capability for pulmonary nodules among standard-, reduced- and ultra-low-dose CTs with and without hybrid type iterative reconstruction technique.
    Ohno Y; Aoyagi K; Chen Q; Sugihara N; Iwasawa T; Okada F; Aoki T
    Eur J Radiol; 2018 Mar; 100():49-57. PubMed ID: 29496079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Value of a Computer-aided Detection System Based on Chest Tomosynthesis Imaging for the Detection of Pulmonary Nodules.
    Yamada Y; Shiomi E; Hashimoto M; Abe T; Matsusako M; Saida Y; Ogawa K
    Radiology; 2018 Apr; 287(1):333-339. PubMed ID: 29206596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of radiation dose and iterative reconstruction on pulmonary nodule measurements at chest CT: a phantom study.
    Kim H; Park CM; Chae HD; Lee SM; Goo JM
    Diagn Interv Radiol; 2015; 21(6):459-65. PubMed ID: 26359871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prospective Pilot Evaluation of Radiologists and Computer-aided Pulmonary Nodule Detection on Ultra-low-Dose CT With Tin Filtration.
    Takahashi EA; Koo CW; White DB; Lindell RM; Sykes AG; Levin DL; Kuzo RS; Wolf M; Bogoni L; Carter RE; McCollough CH; Fletcher JG
    J Thorac Imaging; 2018 Nov; 33(6):396-401. PubMed ID: 30048344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pulmonary nodules: effect of adaptive statistical iterative reconstruction (ASIR) technique on performance of a computer-aided detection (CAD) system-comparison of performance between different-dose CT scans.
    Yanagawa M; Honda O; Kikuyama A; Gyobu T; Sumikawa H; Koyama M; Tomiyama N
    Eur J Radiol; 2012 Oct; 81(10):2877-86. PubMed ID: 21982461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultra-low peak voltage CT colonography: effect of iterative reconstruction algorithms on performance of radiologists who use anthropomorphic colonic phantoms.
    Shin CI; Kim SH; Lee ES; Lee DH; Hwang EJ; Chung SY; Lee JM; Han JK; Choi BI
    Radiology; 2014 Dec; 273(3):759-71. PubMed ID: 25010640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Observer Performance for Detection of Pulmonary Nodules at Chest CT over a Large Range of Radiation Dose Levels.
    Fletcher JG; Levin DL; Sykes AG; Lindell RM; White DB; Kuzo RS; Suresh V; Yu L; Leng S; Holmes DR; Inoue A; Johnson MP; Carter RE; McCollough CH
    Radiology; 2020 Dec; 297(3):699-707. PubMed ID: 32990514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accuracy of Pulmonary Nodule Volumetry at Different Exposure Parameters in Low-Dose Computed Tomography: A Phantom Study.
    Liu J; Qing H; Luo H; He C; Wang C; Ren J; Zhou P
    J Comput Assist Tomogr; 2019; 43(6):926-930. PubMed ID: 31453975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultralow-dose chest computed tomography for pulmonary nodule detection: first performance evaluation of single energy scanning with spectral shaping.
    Gordic S; Morsbach F; Schmidt B; Allmendinger T; Flohr T; Husarik D; Baumueller S; Raupach R; Stolzmann P; Leschka S; Frauenfelder T; Alkadhi H
    Invest Radiol; 2014 Jul; 49(7):465-73. PubMed ID: 24598443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultra-low-dose CT lung screening with artificial intelligence iterative reconstruction: evaluation via automatic nodule-detection software.
    Yang L; Liu H; Han J; Xu S; Zhang G; Wang Q; Du Y; Yang F; Zhao X; Shi G
    Clin Radiol; 2023 Jul; 78(7):525-531. PubMed ID: 36948944
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accuracy of two deep learning-based reconstruction methods compared with an adaptive statistical iterative reconstruction method for solid and ground-glass nodule volumetry on low-dose and ultra-low-dose chest computed tomography: A phantom study.
    Kim C; Kwack T; Kim W; Cha J; Yang Z; Yong HS
    PLoS One; 2022; 17(6):e0270122. PubMed ID: 35737734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance evaluation of a computer-aided detection algorithm for solid pulmonary nodules in low-dose and standard-dose MDCT chest examinations and its influence on radiologists.
    Das M; Mühlenbruch G; Heinen S; Mahnken AH; Salganicoff M; Stanzel S; Günther RW; Wildberger JE
    Br J Radiol; 2008 Nov; 81(971):841-7. PubMed ID: 18941043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists' diagnostic accuracy.
    Hirose T; Nitta N; Shiraishi J; Nagatani Y; Takahashi M; Murata K
    Acad Radiol; 2008 Dec; 15(12):1505-12. PubMed ID: 19000867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of radiation dose and iterative reconstruction algorithms for measurement accuracy and reproducibility of pulmonary nodule volumetry: A phantom study.
    Kim H; Park CM; Song YS; Lee SM; Goo JM
    Eur J Radiol; 2014 May; 83(5):848-57. PubMed ID: 24572380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solid, part-solid, or non-solid?: classification of pulmonary nodules in low-dose chest computed tomography by a computer-aided diagnosis system.
    Jacobs C; van Rikxoort EM; Scholten ET; de Jong PA; Prokop M; Schaefer-Prokop C; van Ginneken B
    Invest Radiol; 2015 Mar; 50(3):168-73. PubMed ID: 25478740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effect of Scanning and Reconstruction Parameters on Three Dimensional Volume and CT Value Measurement of Pulmonary Nodules: A Phantom Study].
    Su D; Feng L; Jiang Y; Wang Y
    Zhongguo Fei Ai Za Zhi; 2017 Aug; 20(8):562-567. PubMed ID: 28855038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual energy subtraction digital radiography improves performance of a next generation computer-aided detection program.
    Balkman JD; Mehandru S; DuPont E; Novak RD; Gilkeson RC
    J Thorac Imaging; 2010 Feb; 25(1):41-7. PubMed ID: 20160602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of exposure parameters and iterative reconstruction on automatic airway segmentation and analysis on MDCT-An ex vivo phantom study.
    Leutz-Schmidt P; Weinheimer O; Jobst BJ; Dinkel J; Biederer J; Kauczor HU; Puderbach MU; Wielpütz MO
    PLoS One; 2017; 12(8):e0182268. PubMed ID: 28767732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume.
    Zhao Y; de Bock GH; Vliegenthart R; van Klaveren RJ; Wang Y; Bogoni L; de Jong PA; Mali WP; van Ooijen PM; Oudkerk M
    Eur Radiol; 2012 Oct; 22(10):2076-84. PubMed ID: 22814824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.