These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 25740719)

  • 1. Cryptochrome-mediated light responses in plants.
    Wang X; Wang Q; Nguyen P; Lin C
    Enzymes; 2014; 35():167-89. PubMed ID: 25740719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryptochrome signaling in plants.
    Li QH; Yang HQ
    Photochem Photobiol; 2007; 83(1):94-101. PubMed ID: 17002522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish.
    Kobayashi Y; Ishikawa T; Hirayama J; Daiyasu H; Kanai S; Toh H; Fukuda I; Tsujimura T; Terada N; Kamei Y; Yuba S; Iwai S; Todo T
    Genes Cells; 2000 Sep; 5(9):725-38. PubMed ID: 10971654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. News about cryptochrome photoreceptors in algae.
    Beel B; Müller N; Kottke T; Mittag M
    Plant Signal Behav; 2013 Feb; 8(2):e22870. PubMed ID: 23154511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary History of the Photolyase/Cryptochrome Superfamily in Eukaryotes.
    Mei Q; Dvornyk V
    PLoS One; 2015; 10(9):e0135940. PubMed ID: 26352435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRY arrests Cop1 to regulate circadian rhythms in mammals.
    Lee C
    Cell Div; 2019; 14():12. PubMed ID: 31700528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryptochromes Orchestrate Transcription Regulation of Diverse Blue Light Responses in Plants.
    Yang Z; Liu B; Su J; Liao J; Lin C; Oka Y
    Photochem Photobiol; 2017 Jan; 93(1):112-127. PubMed ID: 27861972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One Actor, Multiple Roles: The Performances of Cryptochrome in
    Damulewicz M; Mazzotta GM
    Front Physiol; 2020; 11():99. PubMed ID: 32194430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The involvement of the
    Wang W; Mao Z; Guo T; Kou S; Yang HQ
    aBIOTECH; 2021 Jun; 2(2):146-155. PubMed ID: 36304752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity.
    Selby CP; Sancar A
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17696-700. PubMed ID: 17062752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative photochemistry of animal type 1 and type 4 cryptochromes.
    Ozturk N; Selby CP; Song SH; Ye R; Tan C; Kao YT; Zhong D; Sancar A
    Biochemistry; 2009 Sep; 48(36):8585-93. PubMed ID: 19663499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative properties and functions of type 2 and type 4 pigeon cryptochromes.
    Wang X; Jing C; Selby CP; Chiou YY; Yang Y; Wu W; Sancar A; Wang J
    Cell Mol Life Sci; 2018 Dec; 75(24):4629-4641. PubMed ID: 30264181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The binding structure and affinity of photodamaged duplex DNA with members of the photolyase/cryptochrome family: A computational study.
    Sato R; Harada R; Shigeta Y
    Biophys Physicobiol; 2018; 15():18-27. PubMed ID: 29450111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryptochromes: Photochemical and structural insight into magnetoreception.
    Karki N; Vergish S; Zoltowski BD
    Protein Sci; 2021 Aug; 30(8):1521-1534. PubMed ID: 33993574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryptochromes in the field: how blue light influences crop development.
    Fantini E; Facella P
    Physiol Plant; 2020 Jul; 169(3):336-346. PubMed ID: 32175597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into photoactivation of plant Cryptochrome-2.
    Palayam M; Ganapathy J; Guercio AM; Tal L; Deck SL; Shabek N
    Commun Biol; 2021 Jan; 4(1):28. PubMed ID: 33398020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-regulated stomatal aperture in Arabidopsis.
    Chen C; Xiao YG; Li X; Ni M
    Mol Plant; 2012 May; 5(3):566-72. PubMed ID: 22516479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance.
    Chaves I; Yagita K; Barnhoorn S; Okamura H; van der Horst GT; Tamanini F
    Mol Cell Biol; 2006 Mar; 26(5):1743-53. PubMed ID: 16478995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure function analysis of mammalian cryptochromes.
    Tamanini F; Chaves I; Bajek MI; van der Horst GT
    Cold Spring Harb Symp Quant Biol; 2007; 72():133-9. PubMed ID: 18419270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryptochrome structure and signal transduction.
    Lin C; Shalitin D
    Annu Rev Plant Biol; 2003; 54():469-96. PubMed ID: 14503000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.