These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 25740912)

  • 1. Genetic and genomic toolbox of Zea mays.
    Nannas NJ; Dawe RK
    Genetics; 2015 Mar; 199(3):655-69. PubMed ID: 25740912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic affinities revealed by GISH suggests intergenomic restructuring between parental genomes of the paleopolyploid genus Zea.
    González GE; Poggio L
    Genome; 2015 Oct; 58(10):433-9. PubMed ID: 26506040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maize (Zea mays): a model organism for basic and applied research in plant biology.
    Strable J; Scanlon MJ
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.emo132. PubMed ID: 20147033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement.
    Liu J; Fernie AR; Yan J
    Plant Commun; 2020 Jan; 1(1):100010. PubMed ID: 33404535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic affinities between maize and Zea perennis using classical and molecular cytogenetic methods (GISH-FISH).
    González G; Comas C; Confalonieri V; Naranjo CA; Poggio L
    Chromosome Res; 2006; 14(6):629-35. PubMed ID: 16964569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The HuangZaoSi Maize Genome Provides Insights into Genomic Variation and Improvement History of Maize.
    Li C; Song W; Luo Y; Gao S; Zhang R; Shi Z; Wang X; Wang R; Wang F; Wang J; Zhao Y; Su A; Wang S; Li X; Luo M; Wang S; Zhang Y; Ge J; Tan X; Yuan Y; Bi X; He H; Yan J; Wang Y; Hu S; Zhao J
    Mol Plant; 2019 Mar; 12(3):402-409. PubMed ID: 30807824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays).
    Mano Y; Omori F
    Ann Bot; 2013 Oct; 112(6):1125-39. PubMed ID: 23877074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The maize genetics and genomics database. The community resource for access to diverse maize data.
    Lawrence CJ; Seigfried TE; Brendel V
    Plant Physiol; 2005 May; 138(1):55-8. PubMed ID: 15888678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MaizeGDB 2018: the maize multi-genome genetics and genomics database.
    Portwood JL; Woodhouse MR; Cannon EK; Gardiner JM; Harper LC; Schaeffer ML; Walsh JR; Sen TZ; Cho KT; Schott DA; Braun BL; Dietze M; Dunfee B; Elsik CG; Manchanda N; Coe E; Sachs M; Stinard P; Tolbert J; Zimmerman S; Andorf CM
    Nucleic Acids Res; 2019 Jan; 47(D1):D1146-D1154. PubMed ID: 30407532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allopolyploidization facilitates gene flow and speciation among corn, Zea perennis and Tripsacum dactyloides.
    Iqbal MZ; Cheng M; Su Y; Li Y; Jiang W; Li H; Zhao Y; Wen X; Zhang L; Ali A; Rong T; Tang Q
    Planta; 2019 Jun; 249(6):1949-1962. PubMed ID: 30895446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A strategy based on comparative genomics to align ESTs of maize].
    Zhang ZX; Zhang SP; Zheng YL
    Yi Chuan; 2006 Mar; 28(3):339-44. PubMed ID: 16551603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomics: Maize looks set to amaze.
    Muers M
    Nat Rev Genet; 2010 Jan; 11(1):6. PubMed ID: 20050275
    [No Abstract]   [Full Text] [Related]  

  • 13. Addition of individual chromosomes of maize inbreds B73 and Mo17 to oat cultivars Starter and Sun II: maize chromosome retention, transmission, and plant phenotype.
    Rines HW; Phillips RL; Kynast RG; Okagaki RJ; Galatowitsch MW; Huettl PA; Stec AO; Jacobs MS; Suresh J; Porter HL; Walch MD; Cabral CB
    Theor Appl Genet; 2009 Nov; 119(7):1255-64. PubMed ID: 19707741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The power of classic maize mutants: Driving forward our fundamental understanding of plants.
    Richardson AE; Hake S
    Plant Cell; 2022 Jul; 34(7):2505-2517. PubMed ID: 35274692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic screening for artificial selection during domestication and improvement in maize.
    Yamasaki M; Wright SI; McMullen MD
    Ann Bot; 2007 Nov; 100(5):967-73. PubMed ID: 17704539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The TIGR Maize Database.
    Chan AP; Pertea G; Cheung F; Lee D; Zheng L; Whitelaw C; Pontaroli AC; SanMiguel P; Yuan Y; Bennetzen J; Barbazuk WB; Quackenbush J; Rabinowicz PD
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D771-6. PubMed ID: 16381977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomics of Arabidopsis and maize: prospects and limitations.
    Brendel V; Kurtz S; Walbot V
    Genome Biol; 2002; 3(3):REVIEWS1005. PubMed ID: 11897028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of pachytene FISH maps for six maize chromosomes and their integration with other maize maps for insights into genome structure variation.
    Figueroa DM; Bass HW
    Chromosome Res; 2012 May; 20(4):363-80. PubMed ID: 22588802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The art and design of genetic screens: maize.
    Candela H; Hake S
    Nat Rev Genet; 2008 Mar; 9(3):192-203. PubMed ID: 18250623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transgenomic cytogenetic sorghum (Sorghum propinquum) bacterial artificial chromosome fluorescence in situ hybridization map of maize (Zea mays L.) pachytene chromosome 9, evidence for regions of genome hyperexpansion.
    Amarillo FI; Bass HW
    Genetics; 2007 Nov; 177(3):1509-26. PubMed ID: 17947405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.