BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25741009)

  • 1. Viral sensing of the subcellular environment regulates the assembly of new viral replicase complexes during the course of infection.
    Nagy PD
    J Virol; 2015 May; 89(10):5196-9. PubMed ID: 25741009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel mechanism of regulation of tomato bushy stunt virus replication by cellular WW-domain proteins.
    Barajas D; Kovalev N; Qin J; Nagy PD
    J Virol; 2015 Feb; 89(4):2064-79. PubMed ID: 25473045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of Tomato Bushy Stunt Virus RNA-Dependent RNA Polymerase by Cellular Heat Shock Protein 70 Is Enhanced by Phospholipids In Vitro.
    Pogany J; Nagy PD
    J Virol; 2015 May; 89(10):5714-23. PubMed ID: 25762742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The proteasomal Rpn11 metalloprotease suppresses tombusvirus RNA recombination and promotes viral replication via facilitating assembly of the viral replicase complex.
    Prasanth KR; Barajas D; Nagy PD
    J Virol; 2015 Mar; 89(5):2750-63. PubMed ID: 25540361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tombusvirus polymerase: Structure and function.
    Gunawardene CD; Donaldson LW; White KA
    Virus Res; 2017 Apr; 234():74-86. PubMed ID: 28111194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast as a model host to dissect functions of viral and host factors in tombusvirus replication.
    Nagy PD; Pogany J
    Virology; 2006 Jan; 344(1):211-20. PubMed ID: 16364751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of an RNA Virus Replicase in Artificial Giant Unilamellar Vesicles Supports Full Replication and Provides Protection for the Double-Stranded RNA Replication Intermediate.
    Kovalev N; Pogany J; Nagy PD
    J Virol; 2020 Aug; 94(18):. PubMed ID: 32641477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unique role for the host ESCRT proteins in replication of Tomato bushy stunt virus.
    Barajas D; Jiang Y; Nagy PD
    PLoS Pathog; 2009 Dec; 5(12):e1000705. PubMed ID: 20041173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tombusvirus replication depends on Sec39p endoplasmic reticulum-associated transport protein.
    Sasvari Z; Gonzalez PA; Rachubinski RA; Nagy PD
    Virology; 2013 Dec; 447(1-2):21-31. PubMed ID: 24210096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The expanding functions of cellular helicases: the tombusvirus RNA replication enhancer co-opts the plant eIF4AIII-like AtRH2 and the DDX5-like AtRH5 DEAD-box RNA helicases to promote viral asymmetric RNA replication.
    Kovalev N; Nagy PD
    PLoS Pathog; 2014 Apr; 10(4):e1004051. PubMed ID: 24743583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-Free and Cell-Based Approaches to Explore the Roles of Host Membranes and Lipids in the Formation of Viral Replication Compartment Induced by Tombusviruses.
    Nagy PD; Pogany J; Xu K
    Viruses; 2016 Mar; 8(3):68. PubMed ID: 26950140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host factors with regulatory roles in tombusvirus replication.
    Nagy PD; Barajas D; Pogany J
    Curr Opin Virol; 2012 Dec; 2(6):691-8. PubMed ID: 23122856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-template functions of the viral RNA in plant RNA virus replication.
    Pathak KB; Pogany J; Nagy PD
    Curr Opin Virol; 2011 Nov; 1(5):332-8. PubMed ID: 22440835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting alternative subcellular location for replication: tombusvirus replication switches to the endoplasmic reticulum in the absence of peroxisomes.
    Jonczyk M; Pathak KB; Sharma M; Nagy PD
    Virology; 2007 Jun; 362(2):320-30. PubMed ID: 17292435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylation of translation elongation factor 1A by the METTL10-like See1 methyltransferase facilitates tombusvirus replication in yeast and plants.
    Li Z; Gonzalez PA; Sasvari Z; Kinzy TG; Nagy PD
    Virology; 2014 Jan; 448():43-54. PubMed ID: 24314635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translation elongation factor 1A facilitates the assembly of the tombusvirus replicase and stimulates minus-strand synthesis.
    Li Z; Pogany J; Tupman S; Esposito AM; Kinzy TG; Nagy PD
    PLoS Pathog; 2010 Nov; 6(11):e1001175. PubMed ID: 21079685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-opting ATP-generating glycolytic enzyme PGK1 phosphoglycerate kinase facilitates the assembly of viral replicase complexes.
    Prasanth KR; Chuang C; Nagy PD
    PLoS Pathog; 2017 Oct; 13(10):e1006689. PubMed ID: 29059239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tombusvirus-Host Interactions: Co-Opted Evolutionarily Conserved Host Factors Take Center Court.
    Nagy PD
    Annu Rev Virol; 2016 Sep; 3(1):491-515. PubMed ID: 27578441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of in vitro RNA binding and replicase activity by phosphorylation of the p33 replication protein of Cucumber necrosis tombusvirus.
    Stork J; Panaviene Z; Nagy PD
    Virology; 2005 Dec; 343(1):79-92. PubMed ID: 16154612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics analysis of the tombusvirus replicase: Hsp70 molecular chaperone is associated with the replicase and enhances viral RNA replication.
    Serva S; Nagy PD
    J Virol; 2006 Mar; 80(5):2162-9. PubMed ID: 16474124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.