These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 2574109)
1. Dependence of hydrogen peroxide formation in rat liver microsomes on the molecular structure of cytochrome P-450 substrates: a study with barbiturates and beta-adrenoceptor antagonists. Bast A; Goossens PA; Savenije-Chapel EM Eur J Drug Metab Pharmacokinet; 1989; 14(2):93-100. PubMed ID: 2574109 [TBL] [Abstract][Full Text] [Related]
2. Cytochrome P-450 metabolic-intermediate complex formation with a series of diphenhydramine analogues. Bast A; Valk AJ; Timmerman H Agents Actions; 1990 Apr; 30(1-2):161-5. PubMed ID: 2371918 [TBL] [Abstract][Full Text] [Related]
3. The peroxidatic function of liver microsomal cytochrome P-450: comparison of hydrogen peroxide and NADPH-catalysed N-demethylation reactions. Estabrook RW; Martin-Wixtrom C; Saeki Y; Renneberg R; Hildebrandt A; Werringloer J Xenobiotica; 1984; 14(1-2):87-104. PubMed ID: 6719939 [TBL] [Abstract][Full Text] [Related]
4. Interaction of constitutive and phenobarbital-induced cytochrome P-450 isozymes during the sequential oxidation of benzphetamine. Explanation for the difference in benzphetamine-induced hydrogen peroxide production and 455-nm complex formation in microsomes from untreated and phenobarbital-treated rats. Jeffery EH; Mannering GJ Mol Pharmacol; 1983 May; 23(3):748-57. PubMed ID: 6865917 [TBL] [Abstract][Full Text] [Related]
5. Comparison of beta-adrenoceptor antagonists as modulators of drug metabolism: effect of lipophilicity on microsomal phase I and II reactions. Ahokas JT; Davies C; Ravenscroft PJ Br J Clin Pharmacol; 1984; 17 Suppl 1(Suppl 1):103S-105S. PubMed ID: 6146333 [TBL] [Abstract][Full Text] [Related]
7. Product inhibition in orphenadrine metabolism as a result of a stable cytochrome P-450-metabolic intermediate complex formed during the disposition of mono-N-desmethylorphenadrine (tofenacine) in the rat. Bast A; van Kemenade FA; Savenije-Chapel EM; Noordhoek J Res Commun Chem Pathol Pharmacol; 1983 Jun; 40(3):391-403. PubMed ID: 6622816 [TBL] [Abstract][Full Text] [Related]
8. Biotransformation of N,N',N''-triethylenethiophosphoramide: oxidative desulfuration to yield N,N',N''-triethylenephosphoramide associated with suicide inactivation of a phenobarbital-inducible hepatic P-450 monooxygenase. Ng SF; Waxman DJ Cancer Res; 1990 Feb; 50(3):464-71. PubMed ID: 2105156 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of mono-oxygenase and oxidase activity of rat-hepatic cytochrome P-450 by H2-receptor blockers. Bast A; Savenije-Chapel EM; Kroes BH Xenobiotica; 1984 May; 14(5):399-408. PubMed ID: 6089451 [TBL] [Abstract][Full Text] [Related]
10. Cytochrome P-455 nm complex formation in the metabolism of phenylalkylamines. 8. Stereoselectivity in metabolic intermediary complex formation with a series of chiral 2-substituted 1-phenyl-2-aminoethanes. Paulsen-Sörman UB; Jönsson KH; Lindeke BG J Med Chem; 1984 Mar; 27(3):342-6. PubMed ID: 6699879 [TBL] [Abstract][Full Text] [Related]
11. Cytochrome P-450 complex formation by dirithromycin and other macrolides in rat and human livers. Lindstrom TD; Hanssen BR; Wrighton SA Antimicrob Agents Chemother; 1993 Feb; 37(2):265-9. PubMed ID: 8452357 [TBL] [Abstract][Full Text] [Related]
12. [Interaction of 8-aza-16-oxasteroids with rat liver microsomal cytochrome P-450]. Akhrem AA; Popova EM; Bokut' SB; Lis LG; Lakhvich FA Biokhimiia; 1984 Apr; 49(4):570-6. PubMed ID: 6733160 [TBL] [Abstract][Full Text] [Related]
13. One-electron reduction of mitomycin c by rat liver: role of cytochrome P-450 and NADPH-cytochrome P-450 reductase. Vromans RM; van de Straat R; Groeneveld M; Vermeulen NP Xenobiotica; 1990 Sep; 20(9):967-78. PubMed ID: 2122607 [TBL] [Abstract][Full Text] [Related]
14. Hexobarbital-binding, hydroxylation and hexobarbital-dependent hydrogen peroxide production in hepatic microsomes of guinea pig, rat and rabbit. Heinemeyer G; Nigam S; Hildebrandt AG Naunyn Schmiedebergs Arch Pharmacol; 1980 Nov; 314(2):201-10. PubMed ID: 7453835 [TBL] [Abstract][Full Text] [Related]
15. Vinylidene chloride: its metabolism by hepatic microsomal cytochrome P-450 in vitro. Costa AK; Ivanetich KM Biochem Pharmacol; 1982 Jun; 31(11):2083-92. PubMed ID: 7115426 [No Abstract] [Full Text] [Related]
16. Major isozymes of rat liver microsomal cytochrome P-450 involved in the N-oxidation of N-isopropyl-alpha-(2-methylazo)-p-toluamide, the azo derivative of procarbazine. Prough RA; Brown MI; Dannan GA; Guengerich FP Cancer Res; 1984 Feb; 44(2):543-8. PubMed ID: 6692359 [TBL] [Abstract][Full Text] [Related]
17. Peroxidative N-oxidation and N-dealkylation reactions of pargyline. Weli AM; Lindeke B Xenobiotica; 1986 Mar; 16(3):281-8. PubMed ID: 3705622 [TBL] [Abstract][Full Text] [Related]
18. Effects of various barbiturates on hepatic microsomal enzymes. A comparative study. Valerino DM; Vesell ES; Aurori KC; Johnson AO Drug Metab Dispos; 1974; 2(5):448-57. PubMed ID: 4156308 [No Abstract] [Full Text] [Related]
19. Cytochrome P-450-mediated dehydrogenation of 2-n-propyl-2(E)-pentenoic acid, a pharmacologically-active metabolite of valproic acid, in rat liver microsomal preparations. Kassahun K; Baillie TA Drug Metab Dispos; 1993; 21(2):242-8. PubMed ID: 8097692 [TBL] [Abstract][Full Text] [Related]
20. Barbiturate-induced choleresis: possible independence from microsomal enzyme induction. Capron JP; Dumont M; Feldmann G; Erlinger S Digestion; 1977; 15(6):556-65. PubMed ID: 913919 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]