These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 25741348)

  • 21. Integrating tracer-based metabolomics data and metabolic fluxes in a linear fashion via Elementary Carbon Modes.
    Pey J; Rubio A; Theodoropoulos C; Cascante M; Planes FJ
    Metab Eng; 2012 Jul; 14(4):344-53. PubMed ID: 22487533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic Modelling as a Framework for Metabolomics Data Integration and Analysis.
    Volkova S; Matos MRA; Mattanovich M; Marín de Mas I
    Metabolites; 2020 Jul; 10(8):. PubMed ID: 32722118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the associations between transcript levels and fluxes in constraint-based models of metabolism.
    Sinha N; van Schothorst EM; Hooiveld GJEJ; Keijer J; Martins Dos Santos VAP; Suarez-Diez M
    BMC Bioinformatics; 2021 Nov; 22(1):574. PubMed ID: 34839828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LK-DFBA: a linear programming-based modeling strategy for capturing dynamics and metabolite-dependent regulation in metabolism.
    Dromms RA; Lee JY; Styczynski MP
    BMC Bioinformatics; 2020 Mar; 21(1):93. PubMed ID: 32122331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mathematical models of plant metabolism.
    Shi H; Schwender J
    Curr Opin Biotechnol; 2016 Feb; 37():143-152. PubMed ID: 26723012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in the integration of transcriptional regulatory information into genome-scale metabolic models.
    Vivek-Ananth RP; Samal A
    Biosystems; 2016 Sep; 147():1-10. PubMed ID: 27287878
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing Escherichia coli metabolism models and simulation approaches in phenotype predictions: Validation against experimental data.
    Costa RS; Vinga S
    Biotechnol Prog; 2018 Nov; 34(6):1344-1354. PubMed ID: 30294889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Refining metabolic models and accounting for regulatory effects.
    Kim J; Reed JL
    Curr Opin Biotechnol; 2014 Oct; 29():34-8. PubMed ID: 24632483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pyTFA and matTFA: a Python package and a Matlab toolbox for Thermodynamics-based Flux Analysis.
    Salvy P; Fengos G; Ataman M; Pathier T; Soh KC; Hatzimanikatis V
    Bioinformatics; 2019 Jan; 35(1):167-169. PubMed ID: 30561545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of metabolite-protein interactions based on integration of machine learning and constraint-based modeling.
    Soleymani Babadi F; Razaghi-Moghadam Z; Zare-Mirakabad F; Nikoloski Z
    Bioinform Adv; 2023; 3(1):vbad098. PubMed ID: 37521309
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrating -omics data into genome-scale metabolic network models: principles and challenges.
    Ramon C; Gollub MG; Stelling J
    Essays Biochem; 2018 Oct; 62(4):563-574. PubMed ID: 30315095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flux balance analysis as an alternative method to estimate fluxes without labeling.
    Grafahrend-Belau E; Junker A; Schreiber F; Junker BH
    Methods Mol Biol; 2014; 1090():281-99. PubMed ID: 24222422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SCOUR: a stepwise machine learning framework for predicting metabolite-dependent regulatory interactions.
    Lee JY; Nguyen B; Orosco C; Styczynski MP
    BMC Bioinformatics; 2021 Jul; 22(1):365. PubMed ID: 34238207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. IntLIM: integration using linear models of metabolomics and gene expression data.
    Siddiqui JK; Baskin E; Liu M; Cantemir-Stone CZ; Zhang B; Bonneville R; McElroy JP; Coombes KR; Mathé EA
    BMC Bioinformatics; 2018 Mar; 19(1):81. PubMed ID: 29506475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systems biology of cancer: moving toward the integrative study of the metabolic alterations in cancer cells.
    Hernández Patiño CE; Jaime-Muñoz G; Resendis-Antonio O
    Front Physiol; 2012; 3():481. PubMed ID: 23316163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integration of probabilistic regulatory networks into constraint-based models of metabolism with applications to Alzheimer's disease.
    Yu H; Blair RH
    BMC Bioinformatics; 2019 Jul; 20(1):386. PubMed ID: 31291905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioinoculant capability enhancement through metabolomics and systems biology approaches.
    Chaudhary T; Shukla P
    Brief Funct Genomics; 2018 Jun; 18(3):159-168. PubMed ID: 31232454
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-scale metabolic networks.
    Terzer M; Maynard ND; Covert MW; Stelling J
    Wiley Interdiscip Rev Syst Biol Med; 2009; 1(3):285-297. PubMed ID: 20835998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimating Metabolic Fluxes Using a Maximum Network Flexibility Paradigm.
    Megchelenbrink W; Rossell S; Huynen MA; Notebaart RA; Marchiori E
    PLoS One; 2015; 10(10):e0139665. PubMed ID: 26457579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A possibilistic framework for constraint-based metabolic flux analysis.
    Llaneras F; Sala A; Picó J
    BMC Syst Biol; 2009 Jul; 3():79. PubMed ID: 19646223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.