These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25741351)

  • 1. Interpreting lemma and palea homologies: a point of view from rice floral mutants.
    Lombardo F; Yoshida H
    Front Plant Sci; 2015; 6():61. PubMed ID: 25741351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An AT-hook gene is required for palea formation and floral organ number control in rice.
    Jin Y; Luo Q; Tong H; Wang A; Cheng Z; Tang J; Li D; Zhao X; Li X; Wan J; Jiao Y; Chu C; Zhu L
    Dev Biol; 2011 Nov; 359(2):277-88. PubMed ID: 21924254
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Dai Z; Wang J; Zhu M; Miao X; Shi Z
    Front Plant Sci; 2016; 7():1891. PubMed ID: 28066457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice.
    Chen ZX; Wu JG; Ding WN; Chen HM; Wu P; Shi CH
    Planta; 2006 Apr; 223(5):882-90. PubMed ID: 16254725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs.
    Prasad K; Parameswaran S; Vijayraghavan U
    Plant J; 2005 Sep; 43(6):915-28. PubMed ID: 16146529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals.
    Prasad K; Sriram P; Kumar CS; Kushalappa K; Vijayraghavan U
    Dev Genes Evol; 2001 Jun; 211(6):281-90. PubMed ID: 11466523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular aspects of flower development in grasses.
    Ciaffi M; Paolacci AR; Tanzarella OA; Porceddu E
    Sex Plant Reprod; 2011 Dec; 24(4):247-82. PubMed ID: 21877128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa).
    Cui R; Han J; Zhao S; Su K; Wu F; Du X; Xu Q; Chong K; Theissen G; Meng Z
    Plant J; 2010 Mar; 61(5):767-81. PubMed ID: 20003164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma, and fertility in rice, by promoting epidermal cell differentiation.
    Pu CX; Ma Y; Wang J; Zhang YC; Jiao XW; Hu YH; Wang LL; Zhu ZG; Sun D; Sun Y
    Plant J; 2012 Jun; 70(6):940-53. PubMed ID: 22332708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RETARDED PALEA1 controls palea development and floral zygomorphy in rice.
    Yuan Z; Gao S; Xue DW; Luo D; Li LT; Ding SY; Yao X; Wilson ZA; Qian Q; Zhang DB
    Plant Physiol; 2009 Jan; 149(1):235-44. PubMed ID: 18952859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA-mediated regulation of flower development in grasses.
    Smoczynska A; Szweykowska-Kulinska Z
    Acta Biochim Pol; 2016; 63(4):687-692. PubMed ID: 27815966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and fine mapping of a mutant gene for palealess spikelet in rice.
    Luo Q; Zhou K; Zhao X; Zeng Q; Xia H; Zhai W; Xu J; Wu X; Yang H; Zhu L
    Planta; 2005 May; 221(2):222-30. PubMed ID: 15605239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for TRIANGULAR HULL1 in fine-tuning spikelet morphogenesis in rice.
    Sato DS; Ohmori Y; Nagashima H; Toriba T; Hirano HY
    Genes Genet Syst; 2014; 89(2):61-9. PubMed ID: 25224972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OsYSL16 is Required for Preferential Cu Distribution to Floral Organs in Rice.
    Zhang C; Lu W; Yang Y; Shen Z; Ma JF; Zheng L
    Plant Cell Physiol; 2018 Oct; 59(10):2039-2051. PubMed ID: 29939322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MADS-box gene expression and implications for developmental origins of the grass spikelet.
    Preston JC; Christensen A; Malcomber ST; Kellogg EA
    Am J Bot; 2009 Aug; 96(8):1419-29. PubMed ID: 21628289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice.
    Yun D; Liang W; Dreni L; Yin C; Zhou Z; Kater MM; Zhang D
    Mol Plant; 2013 May; 6(3):743-56. PubMed ID: 23300256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ABCs of flower development: mutational analysis of AP1/FUL-like genes in rice provides evidence for a homeotic (A)-function in grasses.
    Wu F; Shi X; Lin X; Liu Y; Chong K; Theißen G; Meng Z
    Plant J; 2017 Jan; 89(2):310-324. PubMed ID: 27689766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine Mapping of Rice Specific
    Xie W; Liu W; Yu X; Zeng D; Ren D
    Front Plant Sci; 2022; 13():864099. PubMed ID: 35685009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TH1, a DUF640 domain-like gene controls lemma and palea development in rice.
    Li X; Sun L; Tan L; Liu F; Zhu Z; Fu Y; Sun X; Sun X; Xie D; Sun C
    Plant Mol Biol; 2012 Mar; 78(4-5):351-9. PubMed ID: 22203474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots.
    Ambrose BA; Lerner DR; Ciceri P; Padilla CM; Yanofsky MF; Schmidt RJ
    Mol Cell; 2000 Mar; 5(3):569-79. PubMed ID: 10882141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.