These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25741671)

  • 1. A small volume procedure for viral concentration from water.
    McMinn BR; Korajkic A
    J Vis Exp; 2015 Feb; (96):. PubMed ID: 25741671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of adenovirus 40 and 41 recovery from tap water using small disk filters.
    McMinn BR
    J Virol Methods; 2013 Nov; 193(2):284-90. PubMed ID: 23796954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of electropositive filtration for recovering norovirus in water.
    Lee H; Kim M; Paik SY; Lee CH; Jheong WH; Kim J; Ko G
    J Water Health; 2011 Mar; 9(1):27-36. PubMed ID: 21301112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a novel filter cartridge system with electropositive granule media to concentrate viruses from large volumes of natural surface water.
    Jin M; Guo X; Wang XW; Yang D; Shen ZQ; Qiu ZG; Chen ZL; Li JW
    Environ Sci Technol; 2014 Jun; 48(12):6947-56. PubMed ID: 24865258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New electropositive filter for concentrating enteroviruses and noroviruses from large volumes of water.
    Karim MR; Rhodes ER; Brinkman N; Wymer L; Fout GS
    Appl Environ Microbiol; 2009 Apr; 75(8):2393-9. PubMed ID: 19218410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New method using a positively charged microporous filter and ultrafiltration for concentration of viruses from tap water.
    Ikner LA; Soto-Beltran M; Bright KR
    Appl Environ Microbiol; 2011 May; 77(10):3500-6. PubMed ID: 21441329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a virus concentration method using lanthanum-based chemical flocculation coupled with modified membrane filtration procedures.
    Zhang Y; Riley LK; Lin M; Purdy GA; Hu Z
    J Virol Methods; 2013 Jun; 190(1-2):41-8. PubMed ID: 23557666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of MK filters for recovery of enteroviruses from tap water.
    Ma JF; Naranjo J; Gerba CP
    Appl Environ Microbiol; 1994 Jun; 60(6):1974-7. PubMed ID: 8031090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the celite secondary concentration procedure and an alternate elution buffer for the recovery of enteric adenoviruses 40 and 41.
    McMinn BR; Cashdollar JL; Grimm AC; Fout GS
    J Virol Methods; 2012 Feb; 179(2):423-8. PubMed ID: 22138439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of poliovirus concentration and recovery from treated wastewater by two electropositive filter methods.
    Soto-Beltran M; Ikner LA; Bright KR
    Food Environ Virol; 2013 Jun; 5(2):91-6. PubMed ID: 23412726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of positively charged alumina nanofibre cartridge filters for the primary concentration of noroviruses, adenoviruses and male-specific coliphages from seawater.
    Gibbons CD; Rodríguez RA; Tallon L; Sobsey MD
    J Appl Microbiol; 2010 Aug; 109(2):635-641. PubMed ID: 20202019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization and evaluation of a method to detect adenoviruses in river water.
    McMinn BR; Korajkic A; Grimm AC
    J Virol Methods; 2016 May; 231():8-13. PubMed ID: 26874286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A consecutive centrifugal method for concentration of human enteric viruses in water samples.
    Yuan T; Zhao C; Wang Z; Xia H; Liu R
    Arch Virol; 2016 Dec; 161(12):3323-3330. PubMed ID: 27581806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-analytical and analytical procedures for the detection of enteric viruses and enterovirus in water samples.
    Pang XL; Lee BE; Pabbaraju K; Gabos S; Craik S; Payment P; Neumann N
    J Virol Methods; 2012 Sep; 184(1-2):77-83. PubMed ID: 22633928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concentration and recovery of viruses from water: a comprehensive review.
    Ikner LA; Gerba CP; Bright KR
    Food Environ Virol; 2012 Jun; 4(2):41-67. PubMed ID: 23412811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentration of viruses from environmental waters using nanoalumina fiber filters.
    Li D; Shi HC; Jiang SC
    J Microbiol Methods; 2010 Apr; 81(1):33-8. PubMed ID: 20109500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple and efficient method for detecting avian influenza virus in water samples.
    Zhang H; Chen Q; Chen Z
    J Virol Methods; 2014 Apr; 199():124-8. PubMed ID: 24486922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a concentration method for the detection of influenza a viruses from large volumes of surface water.
    Deboosere N; Horm SV; Pinon A; Gachet J; Coldefy C; Buchy P; Vialette M
    Appl Environ Microbiol; 2011 Jun; 77(11):3802-8. PubMed ID: 21498756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of recovery of virus from wastewaters by beef extract-Celite, ferric chloride, and filter concentration procedures.
    Dahling DR; Wright BA
    J Virol Methods; 1988 Dec; 22(2-3):337-46. PubMed ID: 3220927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glass wool filters for concentrating waterborne viruses and agricultural zoonotic pathogens.
    Millen HT; Gonnering JC; Berg RK; Spencer SK; Jokela WE; Pearce JM; Borchardt JS; Borchardt MA
    J Vis Exp; 2012 Mar; (61):e3930. PubMed ID: 22415031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.