These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 25741692)

  • 1. Protein topology determines cysteine oxidation fate: the case of sulfenyl amide formation among protein families.
    Defelipe LA; Lanzarotti E; Gauto D; Marti MA; Turjanski AG
    PLoS Comput Biol; 2015 Mar; 11(3):e1004051. PubMed ID: 25741692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein cysteine oxidation in redox signaling: Caveats on sulfenic acid detection and quantification.
    Forman HJ; Davies MJ; Krämer AC; Miotto G; Zaccarin M; Zhang H; Ursini F
    Arch Biochem Biophys; 2017 Mar; 617():26-37. PubMed ID: 27693037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protection of a single-cysteine redox switch from oxidative destruction: On the functional role of sulfenyl amide formation in the redox-regulated enzyme PTP1B.
    Sivaramakrishnan S; Cummings AH; Gates KS
    Bioorg Med Chem Lett; 2010 Jan; 20(2):444-7. PubMed ID: 20015650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein sulfenic acids in redox signaling.
    Poole LB; Karplus PA; Claiborne A
    Annu Rev Pharmacol Toxicol; 2004; 44():325-47. PubMed ID: 14744249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential redox regulation of cysteine-based protein tyrosine phosphatases: structural and biochemical diversity.
    Netto LES; Machado LESF
    FEBS J; 2022 Sep; 289(18):5480-5504. PubMed ID: 35490402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of protection against irreversible oxidation of the catalytic cysteine of ALDH enzymes: Possible role of vicinal cysteines.
    Muñoz-Clares RA; González-Segura L; Murillo-Melo DS; Riveros-Rosas H
    Chem Biol Interact; 2017 Oct; 276():52-64. PubMed ID: 28216341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox regulation of protein tyrosine phosphatase 1B (PTP1B): a biomimetic study on the unexpected formation of a sulfenyl amide intermediate.
    Sarma BK; Mugesh G
    J Am Chem Soc; 2007 Jul; 129(28):8872-81. PubMed ID: 17585764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate.
    Salmeen A; Andersen JN; Myers MP; Meng TC; Hinks JA; Tonks NK; Barford D
    Nature; 2003 Jun; 423(6941):769-73. PubMed ID: 12802338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B.
    van Montfort RL; Congreve M; Tisi D; Carr R; Jhoti H
    Nature; 2003 Jun; 423(6941):773-7. PubMed ID: 12802339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfone-stabilized carbanions for the reversible covalent capture of a posttranslationally-generated cysteine oxoform found in protein tyrosine phosphatase 1B (PTP1B).
    Parsons ZD; Ruddraraju KV; Santo N; Gates KS
    Bioorg Med Chem; 2016 Jun; 24(12):2631-40. PubMed ID: 27132865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction.
    Sohn J; Rudolph J
    Biochemistry; 2003 Sep; 42(34):10060-70. PubMed ID: 12939134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox regulation of MAP kinase phosphatase 3.
    Seth D; Rudolph J
    Biochemistry; 2006 Jul; 45(28):8476-87. PubMed ID: 16834321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning Cysteine Reactivity and Sulfenic Acid Stability by Protein Microenvironment in Glyceraldehyde-3-Phosphate Dehydrogenases of Arabidopsis thaliana.
    Zaffagnini M; Fermani S; Calvaresi M; Orrù R; Iommarini L; Sparla F; Falini G; Bottoni A; Trost P
    Antioxid Redox Signal; 2016 Mar; 24(9):502-17. PubMed ID: 26650776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid.
    Salsbury FR; Knutson ST; Poole LB; Fetrow JS
    Protein Sci; 2008 Feb; 17(2):299-312. PubMed ID: 18227433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies.
    Heppner DE; Janssen-Heininger YMW; van der Vliet A
    Arch Biochem Biophys; 2017 Feb; 616():40-46. PubMed ID: 28126370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide.
    Yang J; Groen A; Lemeer S; Jans A; Slijper M; Roe SM; den Hertog J; Barford D
    Biochemistry; 2007 Jan; 46(3):709-19. PubMed ID: 17223692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms and consequences of protein cysteine oxidation: the role of the initial short-lived intermediates.
    Turell L; Zeida A; Trujillo M
    Essays Biochem; 2020 Feb; 64(1):55-66. PubMed ID: 31919496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation.
    Claiborne A; Yeh JI; Mallett TC; Luba J; Crane EJ; Charrier V; Parsonage D
    Biochemistry; 1999 Nov; 38(47):15407-16. PubMed ID: 10569923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiolation and nitrosation of cysteines in biological fluids and cells.
    Di Simplicio P; Franconi F; Frosalí S; Di Giuseppe D
    Amino Acids; 2003 Dec; 25(3-4):323-39. PubMed ID: 14661094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation.
    Claiborne A; Mallett TC; Yeh JI; Luba J; Parsonage D
    Adv Protein Chem; 2001; 58():215-76. PubMed ID: 11665489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.