These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 25741694)
1. Characterization of cellulase secretion and Cre1-mediated carbon source repression in the potential lignocellulose-degrading strain Trichoderma asperellum T-1. Wang Q; Lin H; Shen Q; Fan X; Bai N; Zhao Y PLoS One; 2015; 10(3):e0119237. PubMed ID: 25741694 [TBL] [Abstract][Full Text] [Related]
2. The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30. Limón MC; Pakula T; Saloheimo M; Penttilä M Microb Cell Fact; 2011 May; 10():40. PubMed ID: 21609467 [TBL] [Abstract][Full Text] [Related]
3. Microelectric Current Treatment Enhanced Biodegradation of Pumpkin Lignocelluloses by Trichoderma reesei RUT-C30. Yang R; Liu Y; Zhou Z; Sheng J; Meng D J Agric Food Chem; 2017 Jun; 65(23):4668-4675. PubMed ID: 28537388 [TBL] [Abstract][Full Text] [Related]
4. Defining the genome-wide role of CRE1 during carbon catabolite repression in Trichoderma reesei using RNA-Seq analysis. Antoniêto AC; dos Santos Castro L; Silva-Rocha R; Persinoti GF; Silva RN Fungal Genet Biol; 2014 Dec; 73():93-103. PubMed ID: 25459535 [TBL] [Abstract][Full Text] [Related]
5. The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Ilmén M; Thrane C; Penttilä M Mol Gen Genet; 1996 Jun; 251(4):451-60. PubMed ID: 8709949 [TBL] [Abstract][Full Text] [Related]
6. RNA interference with carbon catabolite repression in Trichoderma koningii for enhancing cellulase production. Wang S; Liu G; Yu J; Tian S; Huang B; Xing M Enzyme Microb Technol; 2013 Jul; 53(2):104-9. PubMed ID: 23769310 [TBL] [Abstract][Full Text] [Related]
7. Expression pattern of cellulolytic and xylanolytic genes regulated by transcriptional factors XYR1 and CRE1 are affected by carbon source in Trichoderma reesei. Castro Ldos S; Antoniêto AC; Pedersoli WR; Silva-Rocha R; Persinoti GF; Silva RN Gene Expr Patterns; 2014 Mar; 14(2):88-95. PubMed ID: 24480777 [TBL] [Abstract][Full Text] [Related]
8. Roles of PKAc1 and CRE1 in cellulose degradation, conidiation, and yellow pigment synthesis in Trichoderma reesei QM6a. Li N; Chen Y; Shen Y; Wang W Biotechnol Lett; 2022 Dec; 44(12):1465-1475. PubMed ID: 36269496 [TBL] [Abstract][Full Text] [Related]
9. Correction: Characterization of Cellulase Secretion and Cre1-Mediated Carbon Source Repression in the Potential Lignocellulose-Degrading Strain Trichoderma asperellum T-1. PLOS ONE Staff PLoS One; 2015; 10(4):e0127492. PubMed ID: 25923359 [No Abstract] [Full Text] [Related]
10. Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator. Zhang X; Li Y; Zhao X; Bai F Bioresour Technol; 2017 Jan; 223():317-322. PubMed ID: 27818160 [TBL] [Abstract][Full Text] [Related]
11. Excellent waste biomass-degrading performance of Trichoderma asperellum T-1 during submerged fermentation. Wang Q; Chen L; Yu D; Lin H; Shen Q; Zhao Y Sci Total Environ; 2017 Dec; 609():1329-1339. PubMed ID: 28793402 [TBL] [Abstract][Full Text] [Related]
12. Trichoderma reesei xylanase 5 is defective in the reference strain QM6a but functional alleles are present in other wild-type strains. Ramoni J; Marchetti-Deschmann M; Seidl-Seiboth V; Seiboth B Appl Microbiol Biotechnol; 2017 May; 101(10):4139-4149. PubMed ID: 28229208 [TBL] [Abstract][Full Text] [Related]
13. Co-culture of Vel1-overexpressed Trichoderma asperellum and Bacillus amyloliquefaciens: An eco-friendly strategy to hydrolyze the lignocellulose biomass in soil to enrich the soil fertility, plant growth and disease resistance. Karuppiah V; Zhixiang L; Liu H; Vallikkannu M; Chen J Microb Cell Fact; 2021 Mar; 20(1):57. PubMed ID: 33653343 [TBL] [Abstract][Full Text] [Related]
14. ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Aro N; Ilmén M; Saloheimo A; Penttilä M Appl Environ Microbiol; 2003 Jan; 69(1):56-65. PubMed ID: 12513977 [TBL] [Abstract][Full Text] [Related]
15. Co-cultivation of T. asperellum GDFS1009 and B. amyloliquefaciens 1841: Strategy to regulate the production of ligno-cellulolytic enzymes for the lignocellulose biomass degradation. Karuppiah V; Zhixiang L; Liu H; Murugappan V; Kumaran S; Perianaika Anahas AM; Chen J J Environ Manage; 2022 Jan; 301():113833. PubMed ID: 34592667 [TBL] [Abstract][Full Text] [Related]
16. Enhanced fermentation and deconstruction of natural wheat straw by Trichoderma asperellum T-1 and its positive transcriptional response. Wang Q; Xiu J; Liu B; Shen L; Wang H; Fang C; Shan S Bioresour Technol; 2024 Aug; 406():130971. PubMed ID: 38897156 [TBL] [Abstract][Full Text] [Related]
17. Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Nakari-Setälä T; Paloheimo M; Kallio J; Vehmaanperä J; Penttilä M; Saloheimo M Appl Environ Microbiol; 2009 Jul; 75(14):4853-60. PubMed ID: 19447952 [TBL] [Abstract][Full Text] [Related]
18. Isolation of a newly Trichoderma asperellum LYS1 with abundant cellulase-hemicellulase enzyme cocktail for lignocellulosic biomass degradation. Mou L; Pan R; Liu Y; Jiang W; Zhang W; Jiang Y; Xin F; Jiang M Enzyme Microb Technol; 2023 Dec; 171():110318. PubMed ID: 37683573 [TBL] [Abstract][Full Text] [Related]
19. Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation. Ezeilo UR; Lee CT; Huyop F; Zakaria II; Wahab RA J Environ Manage; 2019 Aug; 243():206-217. PubMed ID: 31096173 [TBL] [Abstract][Full Text] [Related]
20. Improved xylanase production by Trichoderma reesei grown on L-arabinose and lactose or D-glucose mixtures. Xiong H; Turunen O; Pastinen O; Leisola M; von Weymarn N Appl Microbiol Biotechnol; 2004 Apr; 64(3):353-8. PubMed ID: 14740196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]