BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25741751)

  • 1. Reservoir condition pore-scale imaging of multiple fluid phases using X-ray microtomography.
    Andrew M; Bijeljic B; Blunt M
    J Vis Exp; 2015 Feb; (96):. PubMed ID: 25741751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions.
    Menke HP; Bijeljic B; Andrew MG; Blunt MJ
    Environ Sci Technol; 2015 Apr; 49(7):4407-14. PubMed ID: 25738415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations of Fractures in Carbonate Rocks by CO2-Acidified Brines.
    Deng H; Fitts JP; Crandall D; McIntyre D; Peters CA
    Environ Sci Technol; 2015 Aug; 49(16):10226-34. PubMed ID: 26205851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Vinegar & Wellington calibration for estimation of fluid saturation and porosity from CT images for a core flooding test under geologic carbon storage conditions.
    Miao X; Wang Y; Zhang L; Wei N; Li X
    Micron; 2019 Sep; 124():102703. PubMed ID: 31284162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore-scale Imaging and Characterization of Hydrocarbon Reservoir Rock Wettability at Subsurface Conditions Using X-ray Microtomography.
    Alhammadi AM; AlRatrout A; Bijeljic B; Blunt MJ
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30394374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaporite caprock integrity: an experimental study of reactive mineralogy and pore-scale heterogeneity during brine-CO2 exposure.
    Smith MM; Sholokhova Y; Hao Y; Carroll SA
    Environ Sci Technol; 2013 Jan; 47(1):262-8. PubMed ID: 22831758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis - part 2: Calculation of the evolution of percolation and transport properties.
    Qajar J; Arns CH
    J Contam Hydrol; 2017 Sep; 204():11-27. PubMed ID: 28822588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1: Assessment of pore-scale mineral dissolution and deposition.
    Qajar J; Arns CH
    J Contam Hydrol; 2016 Sep; 192():60-86. PubMed ID: 27389612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore-Scale Geochemical Reactivity Associated with CO
    Noiriel C; Daval D
    Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtomographic quantification of hydraulic clay mineral displacement effects during a CO2 sequestration experiment with saline aquifer sandstone.
    Sell K; Enzmann F; Kersten M; Spangenberg E
    Environ Sci Technol; 2013 Jan; 47(1):198-204. PubMed ID: 22924476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental observation of permeability changes in dolomite at CO2 sequestration conditions.
    Tutolo BM; Luhmann AJ; Kong XZ; Saar MO; Seyfried WE
    Environ Sci Technol; 2014 Feb; 48(4):2445-52. PubMed ID: 24456494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative permeability experiments of carbon dioxide displacing brine and their implications for carbon sequestration.
    Levine JS; Goldberg DS; Lackner KS; Matter JM; Supp MG; Ramakrishnan TS
    Environ Sci Technol; 2014; 48(1):811-8. PubMed ID: 24274391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Quantification of Pore Networks and Anthropogenic Carbon Mineralization in Stacked Basalt Reservoirs.
    Battu AK; Miller QRS; Cao R; Owen AT; Schaef HT
    Environ Sci Technol; 2024 Feb; 58(8):3747-3754. PubMed ID: 38302413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore Structure Changes Occur During CO
    Seyyedi M; Mahmud HKB; Verrall M; Giwelli A; Esteban L; Ghasemiziarani M; Clennell B
    Sci Rep; 2020 Feb; 10(1):3624. PubMed ID: 32107400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Pore-scale Reservoir-condition Imaging of Reaction in Carbonates Using Synchrotron Fast Tomography.
    Menke HP; Andrew MG; Vila-Comamala J; Rau C; Blunt MJ; Bijeljic B
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volumetrics of CO2 storage in deep saline formations.
    Steele-MacInnis M; Capobianco RM; Dilmore R; Goodman A; Guthrie G; Rimstidt JD; Bodnar RJ
    Environ Sci Technol; 2013 Jan; 47(1):79-86. PubMed ID: 22916959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Triaxial Testing To Determine Fracture Permeability and Aperture Distribution for CO
    Van Stappen JF; Meftah R; Boone MA; Bultreys T; De Kock T; Blykers BK; Senger K; Olaussen S; Cnudde V
    Environ Sci Technol; 2018 Apr; 52(8):4546-4554. PubMed ID: 29595248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary pressure-saturation relations for supercritical CO2 and brine in limestone/dolomite sands: implications for geologic carbon sequestration in carbonate reservoirs.
    Wang S; Tokunaga TK
    Environ Sci Technol; 2015 Jun; 49(12):7208-17. PubMed ID: 25945400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From computed microtomography images to resistivity index calculations of heterogeneous carbonates using a dual-porosity pore-network approach: influence of percolation on the electrical transport properties.
    Bauer D; Youssef S; Han M; Bekri S; Rosenberg E; Fleury M; Vizika O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011133. PubMed ID: 21867139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional assessment of CO2-solubility trapping potential: a case study of the coastal and offshore Texas Miocene interval.
    Yang C; TreviƱo RH; Zhang T; Romanak KD; Wallace K; Lu J; Mickler PJ; Hovorka SD
    Environ Sci Technol; 2014 Jul; 48(14):8275-82. PubMed ID: 24956931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.