These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 25741767)

  • 41. Effect of surfactants on plasticizer biodegradation by Bacillus subtilis ATCC 6633.
    Grochowalski AR; Cooper DG; Nicell JA
    Biodegradation; 2007 Jun; 18(3):283-93. PubMed ID: 17080301
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sustainable Production of Biosurfactant from Agro-Industrial Oil Wastes by
    Ciurko D; Czyżnikowska Ż; Kancelista A; Łaba W; Janek T
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142732
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Formulation of crude oil spill dispersants based on the HLD concept and using a lipopeptide biosurfactant.
    Rongsayamanont W; Soonglerdsongpha S; Khondee N; Pinyakong O; Tongcumpou C; Sabatini DA; Luepromchai E
    J Hazard Mater; 2017 Jul; 334():168-177. PubMed ID: 28411538
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources.
    Paraszkiewicz K; Bernat P; Kuśmierska A; Chojniak J; Płaza G
    J Environ Manage; 2018 Mar; 209():65-70. PubMed ID: 29275286
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biosurfactant production by Bacillus subtilis using cassava-processing effluent.
    Nitschke M; Pastore GM
    Appl Biochem Biotechnol; 2004 Mar; 112(3):163-72. PubMed ID: 15007184
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of different Bacillus strains in respect of their ability to produce Surfactin in a model fermentation process with integrated foam fractionation.
    Willenbacher J; Zwick M; Mohr T; Schmid F; Syldatk C; Hausmann R
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9623-32. PubMed ID: 25158834
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surfactin isoforms from Bacillus subtilis HSO121: separation and characterization.
    Haddad NI; Liu X; Yang S; Mu B
    Protein Pept Lett; 2008; 15(3):265-9. PubMed ID: 18336355
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Penetration of surfactin into phospholipid monolayers: nanoscale interfacial organization.
    Eeman M; Berquand A; Dufrêne YF; Paquot M; Dufour S; Deleu M
    Langmuir; 2006 Dec; 22(26):11337-45. PubMed ID: 17154623
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular dynamics study of surfactin monolayer at the air/water interface.
    Gang HZ; Liu JF; Mu BZ
    J Phys Chem B; 2011 Nov; 115(44):12770-7. PubMed ID: 21958007
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surfactin at the Water/Air Interface and in Solution.
    Iglesias-Fernández J; Darré L; Kohlmeyer A; Thomas RK; Shen HH; Domene C
    Langmuir; 2015 Oct; 31(40):11097-104. PubMed ID: 26393968
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Toxicity and applications of surfactin for health and environmental biotechnology.
    Santos VSV; Silveira E; Pereira BB
    J Toxicol Environ Health B Crit Rev; 2018; 21(6-8):382-399. PubMed ID: 30614421
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biological activity of surfactins - a case of a biosurfactant produced by Bacillus subtilis PCM 1949.
    Siwak E; Jewgiński M; Kustrzeba-Wójcicka I
    Acta Biochim Pol; 2015; 62(4):875-8. PubMed ID: 26637377
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bacillus licheniformis: The unexplored alternative for the anaerobic production of lipopeptide biosurfactants?
    Gudiña EJ; Teixeira JA
    Biotechnol Adv; 2022 Nov; 60():108013. PubMed ID: 35752271
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genetic engineering of the precursor supply pathway for the overproduction of the nC
    Hu F; Cai W; Lin J; Wang W; Li S
    Microb Cell Fact; 2021 May; 20(1):96. PubMed ID: 33964901
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enrichment and Isolation of Surfactin-degrading Bacteria.
    Habe H; Sato Y; Taira T; Imura T
    J Oleo Sci; 2021 Apr; 70(4):581-587. PubMed ID: 33692244
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three non-aspartate amino acid mutations in the ComA Response regulator receiver motif severely decrease surfactin production, competence development and spore formation in Bacillus subtilis.
    Wang X; Luo C; Liu Y; Nie Y; Liu Y; Zhang R; Chen Z
    J Microbiol Biotechnol; 2010 Feb; 20(2):301-10. PubMed ID: 20208433
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants.
    Hirata Y; Ryu M; Oda Y; Igarashi K; Nagatsuka A; Furuta T; Sugiura M
    J Biosci Bioeng; 2009 Aug; 108(2):142-6. PubMed ID: 19619862
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice.
    de Oliveira DW; França IW; Félix AK; Martins JJ; Giro ME; Melo VM; Gonçalves LR
    Colloids Surf B Biointerfaces; 2013 Jan; 101():34-43. PubMed ID: 22796769
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface Activity and Ca
    Habe H; Taira T; Imura T
    J Oleo Sci; 2018; 67(10):1307-1313. PubMed ID: 30305561
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique.
    Dhanarajan G; Rangarajan V; Bandi C; Dixit A; Das S; Ale K; Sen R
    J Biotechnol; 2017 Aug; 256():46-56. PubMed ID: 28499818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.