These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25742318)

  • 1. Physical Models for Charge Transfer at Single Crystal Oxide Semiconductor Surfaces as Revealed by the Doping Density Dependence of the Collection Efficiency of Dye Sensitized Photocurrents.
    Watkins KJ; Parkinson BA; Spitler MT
    J Phys Chem B; 2015 Jun; 119(24):7579-88. PubMed ID: 25742318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dye sensitization of single crystal semiconductor electrodes.
    Spitler MT; Parkinson BA
    Acc Chem Res; 2009 Dec; 42(12):2017-29. PubMed ID: 19924998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions.
    Ko KH; Lee YC; Jung YJ
    J Colloid Interface Sci; 2005 Mar; 283(2):482-7. PubMed ID: 15721923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous measurement of absorbance and quantum yields for photocurrent generation at dye-sensitized single-crystal ZnO electrodes.
    Rowley JG; Parkinson BA
    Langmuir; 2013 Nov; 29(45):13790-6. PubMed ID: 24090190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dye-controlled interfacial electron transfer for high-current indium tin oxide photocathodes.
    Huang Z; He M; Yu M; Click K; Beauchamp D; Wu Y
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6857-61. PubMed ID: 25907357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random nanowires of nickel doped TiO2 with high surface area and electron mobility for high efficiency dye-sensitized solar cells.
    Archana PS; Naveen Kumar E; Vijila C; Ramakrishna S; Yusoff MM; Jose R
    Dalton Trans; 2013 Jan; 42(4):1024-32. PubMed ID: 23108373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal-face dependence and photoetching-induced increases of dye-sensitized photocurrents at single-crystal rutile TiO2 surfaces.
    Imanishi A; Suzuki H; Murakoshi K; Nakato Y
    J Phys Chem B; 2006 Oct; 110(42):21050-4. PubMed ID: 17048924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells.
    Salvador P; Hidalgo MG; Zaban A; Bisquert J
    J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth.
    McShane CM; Choi KS
    J Am Chem Soc; 2009 Feb; 131(7):2561-9. PubMed ID: 19199616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the role of the dye/oxide interface via SnO2-based MK-2 dye-sensitized solar cells.
    Son DY; Lee CR; Shin HW; Jang IH; Jung HS; Ahn TK; Park NG
    Phys Chem Chem Phys; 2015 Jun; 17(23):15193-200. PubMed ID: 25990302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of charge transport properties of a 3D electrode for dye-sensitized solar cells.
    Cho CY; Kim HN; Moon JH
    Phys Chem Chem Phys; 2013 Jul; 15(26):10835-40. PubMed ID: 23698158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of surface modification on dye-sensitized solar cell based on an organic dye with naphtho[2,1-b:3,4-b']dithiophene as the conjugated linker.
    Wang X; Guo L; Xia PF; Zheng F; Wong MS; Zhu Z
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1926-32. PubMed ID: 24377275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiconductor hierarchically structured flower-like clusters for dye-sensitized solar cells with nearly 100% charge collection efficiency.
    Xin X; Liu HY; Ye M; Lin Z
    Nanoscale; 2013 Nov; 5(22):11220-6. PubMed ID: 24081015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical tuning effect for Schottky barrier and hot-electron harvest in a plasmonic Au/TiO
    Sun Z; Fang Y
    Sci Rep; 2021 Jan; 11(1):338. PubMed ID: 33432085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bottom-up growth of hierarchical electrodes for highly efficient dye-sensitized solar cells.
    Lee Y; Cho CY; Ha SJ; Kim HN; Moon JH
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3589-95. PubMed ID: 22738020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dye sensitization of four low index TiO2 single crystal photoelectrodes with a series of dicarboxylated cyanine dyes.
    Choi D; Rowley JG; Spitler M; Parkinson BA
    Langmuir; 2013 Jul; 29(30):9410-9. PubMed ID: 23822175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures.
    Park JT; Chi WS; Jeon H; Kim JH
    Nanoscale; 2014 Mar; 6(5):2718-29. PubMed ID: 24457831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of cation on charge recombination in dye-sensitized TiO2 electrodes.
    Olson CL
    J Phys Chem B; 2006 May; 110(19):9619-26. PubMed ID: 16686510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micrometer-sized fluorine doped tin oxide as fast electron collector for enhanced dye-sensitized solar cells.
    Cui XR; Wang YF; Li Z; Zhou L; Gao F; Zeng JH
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16593-600. PubMed ID: 25226086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Important is Working with an Ordered Electrode to Improve the Charge Collection Efficiency in Nanostructured Solar Cells?
    Gonzalez-Vazquez JP; Morales-Flórez V; Anta JA
    J Phys Chem Lett; 2012 Feb; 3(3):386-93. PubMed ID: 26285856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.