These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 25742418)

  • 1. Tetrachlorobenzoquinone activates Nrf2 signaling by Keap1 cross-linking and ubiquitin translocation but not Keap1-Cullin3 complex dissociation.
    Su C; Zhang P; Song X; Shi Q; Fu J; Xia X; Bai H; Hu L; Xu D; Song E; Song Y
    Chem Res Toxicol; 2015 Apr; 28(4):765-74. PubMed ID: 25742418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetrachlorobenzoquinone induces Nrf2 activation via rapid Bach1 nuclear export/ubiquitination and JNK-P62 signaling.
    Su C; Shi Q; Song X; Fu J; Liu Z; Wang Y; Wang Y; Xia X; Song E; Song Y
    Toxicology; 2016 Jul; 363-364():48-57. PubMed ID: 27393035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nrf2/ARE pathway activation, HO-1 and NQO1 induction by polychlorinated biphenyl quinone is associated with reactive oxygen species and PI3K/AKT signaling.
    Li L; Dong H; Song E; Xu X; Liu L; Song Y
    Chem Biol Interact; 2014 Feb; 209():56-67. PubMed ID: 24361488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
    Sun Z; Zhang S; Chan JY; Zhang DD
    Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic induces NAD(P)H-quinone oxidoreductase I by disrupting the Nrf2 x Keap1 x Cul3 complex and recruiting Nrf2 x Maf to the antioxidant response element enhancer.
    He X; Chen MG; Lin GX; Ma Q
    J Biol Chem; 2006 Aug; 281(33):23620-31. PubMed ID: 16785233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases.
    Villeneuve NF; Lau A; Zhang DD
    Antioxid Redox Signal; 2010 Dec; 13(11):1699-712. PubMed ID: 20486766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome.
    Vriend J; Reiter RJ
    Mol Cell Endocrinol; 2015 Feb; 401():213-20. PubMed ID: 25528518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of Nrf2/Keap1 system by Wasabi 6-methylthiohexyl isothiocyanate in ARE-mediated NQO1 expression.
    Korenori Y; Tanigawa S; Kumamoto T; Qin S; Daikoku Y; Miyamori K; Nagai M; Hou DX
    Mol Nutr Food Res; 2013 May; 57(5):854-64. PubMed ID: 23390006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2.
    McMahon M; Swift SR; Hayes JD
    Toxicol Appl Pharmacol; 2018 Dec; 360():45-57. PubMed ID: 30261176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1.
    Eggler AL; Small E; Hannink M; Mesecar AD
    Biochem J; 2009 Jul; 422(1):171-80. PubMed ID: 19489739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Piceatannol induces heme oxygenase-1 expression in human mammary epithelial cells through activation of ARE-driven Nrf2 signaling.
    Lee HH; Park SA; Almazari I; Kim EH; Na HK; Surh YJ
    Arch Biochem Biophys; 2010 Sep; 501(1):142-50. PubMed ID: 20558128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.
    Zhang DD; Lo SC; Cross JV; Templeton DJ; Hannink M
    Mol Cell Biol; 2004 Dec; 24(24):10941-53. PubMed ID: 15572695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nrf2-Keap1 antioxidant defense and cell survival signaling are upregulated by 17β-estradiol in homocysteine-treated dopaminergic SH-SY5Y cells.
    Chen CS; Tseng YT; Hsu YY; Lo YC
    Neuroendocrinology; 2013; 97(3):232-41. PubMed ID: 22948038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase.
    Furukawa M; Xiong Y
    Mol Cell Biol; 2005 Jan; 25(1):162-71. PubMed ID: 15601839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The involvement of p62-Keap1-Nrf2 antioxidative signaling pathway and JNK in the protection of natural flavonoid quercetin against hepatotoxicity.
    Ji LL; Sheng YC; Zheng ZY; Shi L; Wang ZT
    Free Radic Biol Med; 2015 Aug; 85():12-23. PubMed ID: 25881548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within Cells.
    Iso T; Suzuki T; Baird L; Yamamoto M
    Mol Cell Biol; 2016 Dec; 36(24):3100-3112. PubMed ID: 27697860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2.
    Kobayashi A; Kang MI; Okawa H; Ohtsuji M; Zenke Y; Chiba T; Igarashi K; Yamamoto M
    Mol Cell Biol; 2004 Aug; 24(16):7130-9. PubMed ID: 15282312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound.
    Ohnuma T; Nakayama S; Anan E; Nishiyama T; Ogura K; Hiratsuka A
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):27-36. PubMed ID: 20026152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway.
    Zhang DD; Lo SC; Sun Z; Habib GM; Lieberman MW; Hannink M
    J Biol Chem; 2005 Aug; 280(34):30091-9. PubMed ID: 15983046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.