These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Cancer Stem Cells: A Minor Cancer Subpopulation that Redefines Global Cancer Features. Enderling H; Hlatky L; Hahnfeldt P Front Oncol; 2013; 3():76. PubMed ID: 23596563 [TBL] [Abstract][Full Text] [Related]
4. A multicompartment mathematical model of cancer stem cell-driven tumor growth dynamics. Weekes SL; Barker B; Bober S; Cisneros K; Cline J; Thompson A; Hlatky L; Hahnfeldt P; Enderling H Bull Math Biol; 2014 Jul; 76(7):1762-82. PubMed ID: 24840956 [TBL] [Abstract][Full Text] [Related]
8. A simple mathematical model based on the cancer stem cell hypothesis suggests kinetic commonalities in solid tumor growth. Molina-Peña R; Álvarez MM PLoS One; 2012; 7(2):e26233. PubMed ID: 22363395 [TBL] [Abstract][Full Text] [Related]
9. The tumor growth paradox and immune system-mediated selection for cancer stem cells. Hillen T; Enderling H; Hahnfeldt P Bull Math Biol; 2013 Jan; 75(1):161-84. PubMed ID: 23196354 [TBL] [Abstract][Full Text] [Related]
10. Die hard: are cancer stem cells the Bruce Willises of tumor biology? Fábián A; Barok M; Vereb G; Szöllosi J Cytometry A; 2009 Jan; 75(1):67-74. PubMed ID: 19051297 [TBL] [Abstract][Full Text] [Related]
11. Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors. Sottoriva A; Vermeulen L; Tavaré S PLoS Comput Biol; 2011 May; 7(5):e1001132. PubMed ID: 21573198 [TBL] [Abstract][Full Text] [Related]
12. Strategies for cancer stem cell elimination: insights from mathematical modeling. Vainstein V; Kirnasovsky OU; Kogan Y; Agur Z J Theor Biol; 2012 Apr; 298():32-41. PubMed ID: 22210402 [TBL] [Abstract][Full Text] [Related]
13. Cancer stem cells and tumor dormancy. Enderling H Adv Exp Med Biol; 2013; 734():55-71. PubMed ID: 23143975 [TBL] [Abstract][Full Text] [Related]
14. A versatile mathematical work-flow to explore how Cancer Stem Cell fate influences tumor progression. Fornari C; Balbo G; Halawani SM; Ba-Rukab O; Ahmad AR; Calogero RA; Cordero F; Beccuti M BMC Syst Biol; 2015; 9 Suppl 3(Suppl 3):S1. PubMed ID: 26050594 [TBL] [Abstract][Full Text] [Related]
15. Studying the capability of different cancer hallmarks to initiate tumor growth using a cellular automaton simulation. Application in a cancer stem cell context. Monteagudo Á; Santos J Biosystems; 2014 Jan; 115():46-58. PubMed ID: 24262634 [TBL] [Abstract][Full Text] [Related]
17. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth Model Based on Cellular Automata. Monteagudo Á; Santos J PLoS One; 2015; 10(7):e0132306. PubMed ID: 26176702 [TBL] [Abstract][Full Text] [Related]
18. Intra-tumor heterogeneity from a cancer stem cell perspective. Prasetyanti PR; Medema JP Mol Cancer; 2017 Feb; 16(1):41. PubMed ID: 28209166 [TBL] [Abstract][Full Text] [Related]
19. Mutations, evolution and the central role of a self-defined fitness function in the initiation and progression of cancer. Gatenby RA; Brown J Biochim Biophys Acta Rev Cancer; 2017 Apr; 1867(2):162-166. PubMed ID: 28341421 [TBL] [Abstract][Full Text] [Related]
20. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes. Rozhok AI; Salstrom JL; DeGregori J Aging (Albany NY); 2014 Dec; 6(12):1033-48. PubMed ID: 25564763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]