BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 25742874)

  • 1. A flexible and implantable microelectrode arrays using high-temperature grown vertical carbon nanotubes and a biocompatible polymer substrate.
    Yi W; Chen C; Feng Z; Xu Y; Zhou C; Masurkar N; Cavanaugh J; Cheng MM
    Nanotechnology; 2015 Mar; 26(12):125301. PubMed ID: 25742874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible 3D carbon nanotubes cuff electrodes as a peripheral nerve interface.
    Tian P; Yi W; Chen C; Hu J; Qi J; Zhang B; Cheng MM
    Biomed Microdevices; 2018 Feb; 20(1):21. PubMed ID: 29460230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
    Samba R; Herrmann T; Zeck G
    J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible carbon nanotubes electrode for neural recording.
    Lin CM; Lee YT; Yeh SR; Fang W
    Biosens Bioelectron; 2009 May; 24(9):2791-7. PubMed ID: 19272765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encapsulation of an integrated neural interface device with Parylene C.
    Hsu JM; Rieth L; Normann RA; Tathireddy P; Solzbacher F
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):23-9. PubMed ID: 19224715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Flexible Tubular Microelectrode with Conducting Polymer for Multi-Functional Implantable Tissue-Machine Interface.
    Tian HC; Liu JQ; Kang XY; Tang LJ; Wang MH; Ji BW; Yang B; Wang XL; Chen X; Yang CS
    Sci Rep; 2016 May; 6():26910. PubMed ID: 27229174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation.
    Heim M; Yvert B; Kuhn A
    J Physiol Paris; 2012; 106(3-4):137-45. PubMed ID: 22027264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural stimulation with a carbon nanotube microelectrode array.
    Wang K; Fishman HA; Dai H; Harris JS
    Nano Lett; 2006 Sep; 6(9):2043-8. PubMed ID: 16968023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation.
    Luo X; Weaver CL; Zhou DD; Greenberg R; Cui XT
    Biomaterials; 2011 Aug; 32(24):5551-7. PubMed ID: 21601278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An active, flexible carbon nanotube microelectrode array for recording electrocorticograms.
    Chen YC; Hsu HL; Lee YT; Su HC; Yen SJ; Chen CH; Hsu WL; Yew TR; Yeh SR; Yao DJ; Chang YC; Chen H
    J Neural Eng; 2011 Jun; 8(3):034001. PubMed ID: 21474876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.
    Arreaga-Salas DE; Avendaño-Bolívar A; Simon D; Reit R; Garcia-Sandoval A; Rennaker RL; Voit W
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26614-23. PubMed ID: 26575084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays.
    Shein M; Greenbaum A; Gabay T; Sorkin R; David-Pur M; Ben-Jacob E; Hanein Y
    Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio.
    Baranauskas G; Maggiolini E; Castagnola E; Ansaldo A; Mazzoni A; Angotzi GN; Vato A; Ricci D; Panzeri S; Fadiga L
    J Neural Eng; 2011 Dec; 8(6):066013. PubMed ID: 22064890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards circuit integration on fully flexible parylene substrates.
    Wang K; van Deurzen M; Kooyman N; Decre MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5866-9. PubMed ID: 19964876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parylene-based implantable platinum-black coated wire microelectrode for orbicularis oculi muscle electrical stimulation.
    Rui YF; Liu JQ; Yang B; Li KY; Yang CS
    Biomed Microdevices; 2012 Apr; 14(2):367-73. PubMed ID: 22124887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion.
    Kolarcik CL; Catt K; Rost E; Albrecht IN; Bourbeau D; Du Z; Kozai TD; Luo X; Weber DJ; Cui XT
    J Neural Eng; 2015 Feb; 12(1):016008. PubMed ID: 25485675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superior electrochemical performance of carbon nanotubes directly grown on sharp microelectrodes.
    Ansaldo A; Castagnola E; Maggiolini E; Fadiga L; Ricci D
    ACS Nano; 2011 Mar; 5(3):2206-14. PubMed ID: 21341752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration.
    Kuo JT; Kim BJ; Hara SA; Lee CD; Gutierrez CA; Hoang TQ; Meng E
    Lab Chip; 2013 Feb; 13(4):554-61. PubMed ID: 23160191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.